|
1 |
| -from __future__ import annotations |
| 1 | +from typing import List, Tuple, Dict |
| 2 | +from collections import namedtuple |
2 | 3 |
|
| 4 | +Edge = namedtuple("Edge", ["src", "dst", "weight"]) |
3 | 5 |
|
4 |
| -def print_distance(distance: list[float], src): |
5 |
| - print(f"Vertex\tShortest Distance from vertex {src}") |
6 |
| - for i, d in enumerate(distance): |
7 |
| - print(f"{i}\t\t{d}") |
8 | 6 |
|
| 7 | +def print_distance_and_paths(distance: List[float], paths: List[List[int]], src: int): |
| 8 | + """ |
| 9 | + Prints the shortest distance and paths from the source vertex to each vertex. |
| 10 | + """ |
| 11 | + print(f"Vertex\tShortest Distance from Vertex {src}\tPath") |
| 12 | + for vertex, (dist, path) in enumerate(zip(distance, paths)): |
| 13 | + path_str = " -> ".join(map(str, path)) if path else "No path" |
| 14 | + print(f"{vertex}\t\t{dist}\t\t\t\t{path_str}") |
9 | 15 |
|
10 |
| -def check_negative_cycle( |
11 |
| - graph: list[dict[str, int]], distance: list[float], edge_count: int |
12 |
| -): |
13 |
| - for j in range(edge_count): |
14 |
| - u, v, w = (graph[j][k] for k in ["src", "dst", "weight"]) |
15 |
| - if distance[u] != float("inf") and distance[u] + w < distance[v]: |
| 16 | + |
| 17 | +def check_negative_cycle(graph: List[Edge], distance: List[float], predecessor: List[int]) -> bool: |
| 18 | + """ |
| 19 | + Checks if there is a negative weight cycle reachable from the source vertex. |
| 20 | + If found, return True, indicating a negative cycle. |
| 21 | + """ |
| 22 | + for edge in graph: |
| 23 | + if distance[edge.src] != float("inf") and distance[edge.src] + edge.weight < distance[edge.dst]: |
| 24 | + # Update predecessors to indicate a cycle for affected paths |
| 25 | + predecessor[edge.dst] = -1 # Use -1 as a marker for negative cycle detection |
16 | 26 | return True
|
17 | 27 | return False
|
18 | 28 |
|
19 | 29 |
|
20 |
| -def bellman_ford( |
21 |
| - graph: list[dict[str, int]], vertex_count: int, edge_count: int, src: int |
22 |
| -) -> list[float]: |
| 30 | +def reconstruct_paths(predecessor: List[int], vertex_count: int, src: int) -> List[List[int]]: |
| 31 | + """ |
| 32 | + Reconstructs the shortest paths from the source vertex to each vertex using the predecessor list. |
| 33 | + """ |
| 34 | + paths = [[] for _ in range(vertex_count)] |
| 35 | + for vertex in range(vertex_count): |
| 36 | + if predecessor[vertex] == -1: |
| 37 | + paths[vertex] = ["Negative cycle detected"] |
| 38 | + elif predecessor[vertex] is not None: |
| 39 | + path = [] |
| 40 | + current = vertex |
| 41 | + while current is not None: |
| 42 | + path.insert(0, current) |
| 43 | + if current == src: |
| 44 | + break |
| 45 | + current = predecessor[current] |
| 46 | + paths[vertex] = path |
| 47 | + return paths |
| 48 | + |
| 49 | + |
| 50 | +def bellman_ford(graph: List[Edge], vertex_count: int, src: int) -> Tuple[List[float], List[List[int]]]: |
23 | 51 | """
|
24 |
| - Returns shortest paths from a vertex src to all |
25 |
| - other vertices. |
26 |
| - >>> edges = [(2, 1, -10), (3, 2, 3), (0, 3, 5), (0, 1, 4)] |
27 |
| - >>> g = [{"src": s, "dst": d, "weight": w} for s, d, w in edges] |
28 |
| - >>> bellman_ford(g, 4, 4, 0) |
29 |
| - [0.0, -2.0, 8.0, 5.0] |
30 |
| - >>> g = [{"src": s, "dst": d, "weight": w} for s, d, w in edges + [(1, 3, 5)]] |
31 |
| - >>> bellman_ford(g, 4, 5, 0) |
32 |
| - Traceback (most recent call last): |
33 |
| - ... |
34 |
| - Exception: Negative cycle found |
| 52 | + Returns the shortest paths from a vertex src to all other vertices, including path reconstruction. |
35 | 53 | """
|
36 | 54 | distance = [float("inf")] * vertex_count
|
| 55 | + predecessor = [None] * vertex_count # Keeps track of the path predecessors |
37 | 56 | distance[src] = 0.0
|
38 | 57 |
|
| 58 | + # Step 1: Relax edges repeatedly |
39 | 59 | for _ in range(vertex_count - 1):
|
40 |
| - for j in range(edge_count): |
41 |
| - u, v, w = (graph[j][k] for k in ["src", "dst", "weight"]) |
| 60 | + for edge in graph: |
| 61 | + if distance[edge.src] != float("inf") and distance[edge.src] + edge.weight < distance[edge.dst]: |
| 62 | + distance[edge.dst] = distance[edge.src] + edge.weight |
| 63 | + predecessor[edge.dst] = edge.src |
42 | 64 |
|
43 |
| - if distance[u] != float("inf") and distance[u] + w < distance[v]: |
44 |
| - distance[v] = distance[u] + w |
45 |
| - |
46 |
| - negative_cycle_exists = check_negative_cycle(graph, distance, edge_count) |
47 |
| - if negative_cycle_exists: |
| 65 | + # Step 2: Check for negative weight cycles |
| 66 | + if check_negative_cycle(graph, distance, predecessor): |
48 | 67 | raise Exception("Negative cycle found")
|
49 | 68 |
|
50 |
| - return distance |
| 69 | + # Step 3: Reconstruct paths from predecessor list |
| 70 | + paths = reconstruct_paths(predecessor, vertex_count, src) |
| 71 | + |
| 72 | + return distance, paths |
51 | 73 |
|
52 | 74 |
|
53 | 75 | if __name__ == "__main__":
|
| 76 | + # Example graph input for testing purposes |
54 | 77 | import doctest
|
55 |
| - |
56 | 78 | doctest.testmod()
|
57 | 79 |
|
58 |
| - V = int(input("Enter number of vertices: ").strip()) |
59 |
| - E = int(input("Enter number of edges: ").strip()) |
60 |
| - |
61 |
| - graph: list[dict[str, int]] = [{} for _ in range(E)] |
62 |
| - |
63 |
| - for i in range(E): |
64 |
| - print("Edge ", i + 1) |
65 |
| - src, dest, weight = ( |
66 |
| - int(x) |
67 |
| - for x in input("Enter source, destination, weight: ").strip().split(" ") |
68 |
| - ) |
69 |
| - graph[i] = {"src": src, "dst": dest, "weight": weight} |
70 |
| - |
71 |
| - source = int(input("\nEnter shortest path source:").strip()) |
72 |
| - shortest_distance = bellman_ford(graph, V, E, source) |
73 |
| - print_distance(shortest_distance, 0) |
| 80 | + try: |
| 81 | + V = int(input("Enter number of vertices: ").strip()) |
| 82 | + E = int(input("Enter number of edges: ").strip()) |
| 83 | + |
| 84 | + graph: List[Edge] = [] |
| 85 | + |
| 86 | + for i in range(E): |
| 87 | + print(f"Edge {i + 1}") |
| 88 | + src, dest, weight = map(int, input("Enter source, destination, weight: ").strip().split()) |
| 89 | + if src < 0 or src >= V or dest < 0 or dest >= V: |
| 90 | + print(f"Invalid vertices: src and dest should be between 0 and {V - 1}") |
| 91 | + continue |
| 92 | + graph.append(Edge(src, dest, weight)) |
| 93 | + |
| 94 | + source = int(input("\nEnter shortest path source vertex: ").strip()) |
| 95 | + if source < 0 or source >= V: |
| 96 | + print(f"Invalid source: source should be between 0 and {V - 1}") |
| 97 | + else: |
| 98 | + shortest_distance, paths = bellman_ford(graph, V, source) |
| 99 | + print_distance_and_paths(shortest_distance, paths, source) |
| 100 | + except ValueError: |
| 101 | + print("Please enter valid integer inputs.") |
| 102 | + except Exception as e: |
| 103 | + print(e) |
0 commit comments