Skip to content

Commit 2b318a6

Browse files
authored
project_euler/problem_047/sol1.py: def solution(n: int = 4) -> int | None:
1 parent df0da23 commit 2b318a6

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

project_euler/problem_047/sol1.py

+6-6
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424
def unique_prime_factors(n: int) -> set:
2525
"""
2626
Find unique prime factors of an integer.
27-
Tests include sorting because only the set really matters,
27+
Tests include sorting because only the set matters,
2828
not the order in which it is produced.
2929
>>> sorted(set(unique_prime_factors(14)))
3030
[2, 7]
@@ -58,7 +58,7 @@ def upf_len(num: int) -> int:
5858

5959
def equality(iterable: list) -> bool:
6060
"""
61-
Check equality of ALL elements in an iterable
61+
Check the equality of ALL elements in an iterable
6262
>>> equality([1, 2, 3, 4])
6363
False
6464
>>> equality([2, 2, 2, 2])
@@ -69,23 +69,23 @@ def equality(iterable: list) -> bool:
6969
return len(set(iterable)) in (0, 1)
7070

7171

72-
def run(n: int) -> list:
72+
def run(n: int) -> list:[int]
7373
"""
7474
Runs core process to find problem solution.
7575
>>> run(3)
7676
[644, 645, 646]
7777
"""
7878

7979
# Incrementor variable for our group list comprehension.
80-
# This serves as the first number in each list of values
80+
# This is the first number in each list of values
8181
# to test.
8282
base = 2
8383

8484
while True:
8585
# Increment each value of a generated range
8686
group = [base + i for i in range(n)]
8787

88-
# Run elements through out unique_prime_factors function
88+
# Run elements through the unique_prime_factors function
8989
# Append our target number to the end.
9090
checker = [upf_len(x) for x in group]
9191
checker.append(n)
@@ -98,7 +98,7 @@ def run(n: int) -> list:
9898
base += 1
9999

100100

101-
def solution(n: int = 4) -> int:
101+
def solution(n: int = 4) -> int | None:
102102
"""Return the first value of the first four consecutive integers to have four
103103
distinct prime factors each.
104104
>>> solution()

0 commit comments

Comments
 (0)