|
| 1 | +import math |
| 2 | + |
| 3 | +class MinMax: |
| 4 | + """ |
| 5 | + A class to represent a game using the Minimax algorithm. |
| 6 | +
|
| 7 | + Attributes: |
| 8 | + ---------- |
| 9 | + scores : list[int] |
| 10 | + List of terminal node scores. |
| 11 | + tree_depth : int |
| 12 | + Depth of the game tree. |
| 13 | +
|
| 14 | + Methods: |
| 15 | + ------- |
| 16 | + minimax(current_depth: int = 0, node_index: int = 0, is_max_turn: bool = True) -> int: |
| 17 | + Recursive implementation of the minimax algorithm. |
| 18 | + find_optimal_value() -> int: |
| 19 | + Find and return the optimal value for the maximizing player. |
| 20 | +
|
| 21 | + Examples: |
| 22 | + --------- |
| 23 | + >>> game = MinMax([3, 5, 2, 9, 12, 5, 23, 23]) |
| 24 | + >>> game.find_optimal_value() |
| 25 | + 12 |
| 26 | + """ |
| 27 | + |
| 28 | + def __init__(self, scores: list[int]) -> None: |
| 29 | + """ |
| 30 | + Initialize the MinMax game with a list of scores. |
| 31 | + |
| 32 | + Parameters: |
| 33 | + ---------- |
| 34 | + scores : list[int] |
| 35 | + List of terminal node scores. |
| 36 | + """ |
| 37 | + self.scores = scores |
| 38 | + self.tree_depth = int(math.log2(len(scores))) |
| 39 | + |
| 40 | + def minimax(self, current_depth: int = 0, node_index: int = 0, is_max_turn: bool = True) -> int: |
| 41 | + """ |
| 42 | + Recursive implementation of the minimax algorithm. |
| 43 | + |
| 44 | + Parameters: |
| 45 | + ---------- |
| 46 | + current_depth : int |
| 47 | + Current depth in the game tree. |
| 48 | + node_index : int |
| 49 | + Index of the current node in the tree. |
| 50 | + is_max_turn : bool |
| 51 | + Boolean indicating if it's the maximizing player's turn. |
| 52 | +
|
| 53 | + Returns: |
| 54 | + ------- |
| 55 | + int |
| 56 | + The optimal value for the current player. |
| 57 | +
|
| 58 | + Examples: |
| 59 | + --------- |
| 60 | + >>> game = MinMax([3, 5, 2, 9, 12, 5, 23, 23]) |
| 61 | + >>> game.minimax(0, 0, True) |
| 62 | + 12 |
| 63 | + """ |
| 64 | + |
| 65 | + if current_depth == self.tree_depth: |
| 66 | + return self.scores[node_index] |
| 67 | + |
| 68 | + if is_max_turn: |
| 69 | + return max( |
| 70 | + self.minimax(current_depth + 1, node_index * 2, False), |
| 71 | + self.minimax(current_depth + 1, node_index * 2 + 1, False) |
| 72 | + ) |
| 73 | + else: |
| 74 | + return min( |
| 75 | + self.minimax(current_depth + 1, node_index * 2, True), |
| 76 | + self.minimax(current_depth + 1, node_index * 2 + 1, True) |
| 77 | + ) |
| 78 | + |
| 79 | + def find_optimal_value(self) -> int: |
| 80 | + """ |
| 81 | + Find and return the optimal value for the maximizing player. |
| 82 | + |
| 83 | + Returns: |
| 84 | + ------- |
| 85 | + int |
| 86 | + The optimal value. |
| 87 | +
|
| 88 | + Examples: |
| 89 | + --------- |
| 90 | + >>> game = MinMax([3, 5, 2, 9, 12, 5, 23, 23]) |
| 91 | + >>> game.find_optimal_value() |
| 92 | + 12 |
| 93 | + """ |
| 94 | + return self.minimax() |
| 95 | + |
| 96 | +if __name__ == "__main__": |
| 97 | + import doctest |
| 98 | + doctest.testmod() |
| 99 | + |
| 100 | + scores = [3, 5, 2, 9, 12, 5, 23, 23] |
| 101 | + game = MinMax(scores) |
| 102 | + optimal_value = game.find_optimal_value() |
| 103 | + print(f"The optimal value is: {optimal_value}") |
0 commit comments