@@ -49,9 +49,9 @@ def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy, draw_e
49
49
'''
50
50
data_train = np .asarray (data_train )
51
51
data_teach = np .asarray (data_teach )
52
- print ('-------------------Start Training-------------------------' )
53
- print (' - - Shape: Train_Data ' ,np .shape (data_train ))
54
- print (' - - Shape: Teach_Data ' ,np .shape (data_teach ))
52
+ # print('-------------------Start Training-------------------------')
53
+ # print(' - - Shape: Train_Data ',np.shape(data_train))
54
+ # print(' - - Shape: Teach_Data ',np.shape(data_teach))
55
55
rp = 0
56
56
all_mse = []
57
57
mse = 10000
@@ -95,9 +95,9 @@ def draw_error():
95
95
plt .ylabel ('All_mse' )
96
96
plt .grid (True ,alpha = 0.7 )
97
97
plt .show ()
98
- print ('------------------Training Complished---------------------' )
99
- print (' - - Training epoch: ' , rp , ' - - Mse: %.6f' % mse )
100
- print (' - - Last Output: ' , final_out3 )
98
+ # print('------------------Training Complished---------------------')
99
+ # print(' - - Training epoch: ', rp, ' - - Mse: %.6f'%mse)
100
+ # print(' - - Last Output: ', final_out3)
101
101
if draw_e :
102
102
draw_error ()
103
103
@@ -108,9 +108,9 @@ def predict(self,data_test):
108
108
'''
109
109
data_test = np .asarray (data_test )
110
110
produce_out = []
111
- print ('-------------------Start Testing-------------------------' )
112
- print (' - - Shape: Test_Data ' ,np .shape (data_test ))
113
- print (np .shape (data_test ))
111
+ # print('-------------------Start Testing-------------------------')
112
+ # print(' - - Shape: Test_Data ',np.shape(data_test))
113
+ # print(np.shape(data_test))
114
114
for g in range (np .shape (data_test )[0 ]):
115
115
116
116
net_i = data_test [g ]
0 commit comments