|
| 1 | +""" |
| 2 | +Fixed-Size Sliding Window Algorithm |
| 3 | +
|
| 4 | +This module contains an implementation of the fixed-size |
| 5 | +sliding window algorithm with doctests. |
| 6 | +
|
| 7 | +Examples: |
| 8 | + >>> max_sum_subarray([1, 2, 3, 4, 5], 3) |
| 9 | + 12 |
| 10 | +
|
| 11 | + >>> max_sum_subarray([2, 1, 5, 1, 3, 2], 4) |
| 12 | + 11 |
| 13 | +""" |
| 14 | + |
| 15 | + |
| 16 | +def max_sum_subarray(arr: list[int], k: int) -> int: |
| 17 | + """ |
| 18 | + Find the maximum sum of any subarray of size `k`. |
| 19 | +
|
| 20 | + Args: |
| 21 | + arr: The input array of integers. |
| 22 | + k: The size of the subarray. |
| 23 | +
|
| 24 | + Returns: |
| 25 | + The maximum sum of a subarray of size `k`. |
| 26 | +
|
| 27 | + Raises: |
| 28 | + ValueError: If the length of the array is less than `k`. |
| 29 | +
|
| 30 | + Examples: |
| 31 | + >>> max_sum_subarray([1, 2, 3, 4, 5], 3) |
| 32 | + 12 |
| 33 | +
|
| 34 | + >>> max_sum_subarray([2, 1, 5, 1, 3, 2], 4) |
| 35 | + 11 |
| 36 | +
|
| 37 | + >>> max_sum_subarray([1, 2], 3) |
| 38 | + Traceback (most recent call last): |
| 39 | + ... |
| 40 | + ValueError: Array length must be at least as large as the window size. |
| 41 | + """ |
| 42 | + if len(arr) < k: |
| 43 | + raise ValueError("Array length must be at least as large as the window size.") |
| 44 | + |
| 45 | + max_sum = float('-inf') |
| 46 | + window_sum = sum(arr[:k]) |
| 47 | + max_sum = max(max_sum, window_sum) |
| 48 | + |
| 49 | + for i in range(len(arr) - k): |
| 50 | + window_sum = window_sum - arr[i] + arr[i + k] |
| 51 | + max_sum = max(max_sum, window_sum) |
| 52 | + |
| 53 | + return max_sum |
| 54 | + |
| 55 | + |
| 56 | +if __name__ == "__main__": |
| 57 | + import doctest |
| 58 | + |
| 59 | + doctest.testmod() |
0 commit comments