|
| 1 | +""" |
| 2 | +Find the Maximum Subarray Sum using Kadane's Algorithm. |
| 3 | +Reference: https://leetcode.com/problems/maximum-subarray/ |
| 4 | +
|
| 5 | +Python doctest can be run with the following command: |
| 6 | +python -m doctest -v maximum_subarray.py |
| 7 | +
|
| 8 | +Given an integer array nums, this function returns |
| 9 | +the maximum sum of a contiguous subarray. |
| 10 | +
|
| 11 | +A subarray is a contiguous part of an array. |
| 12 | +
|
| 13 | +Example Input: |
| 14 | +nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4] |
| 15 | +Output: 6 |
| 16 | +
|
| 17 | +""" |
| 18 | + |
| 19 | +def max_subarray_sum(nums: list[int]) -> int: |
| 20 | + """ |
| 21 | + Find the maximum subarray sum using Kadane's Algorithm. |
| 22 | +
|
| 23 | + Args: |
| 24 | + nums (list[int]): The input array of integers. |
| 25 | +
|
| 26 | + Returns: |
| 27 | + int: The maximum subarray sum. |
| 28 | +
|
| 29 | + Examples: |
| 30 | + >>> max_subarray_sum([-2, 1, -3, 4, -1, 2, 1, -5, 4]) |
| 31 | + 6 |
| 32 | + >>> max_subarray_sum([1]) |
| 33 | + 1 |
| 34 | + >>> max_subarray_sum([5, 4, -1, 7, 8]) |
| 35 | + 23 |
| 36 | + >>> max_subarray_sum([-1, -2, -3, -4]) |
| 37 | + -1 |
| 38 | + """ |
| 39 | + max_current = max_global = nums[0] |
| 40 | + |
| 41 | + for num in nums[1:]: |
| 42 | + max_current = max(num, max_current + num) |
| 43 | + max_global = max(max_global, max_current) |
| 44 | + |
| 45 | + return max_global |
| 46 | + |
| 47 | +if __name__ == "__main__": |
| 48 | + import doctest |
| 49 | + |
| 50 | + doctest.testmod() |
| 51 | + |
| 52 | + |
| 53 | +# Kadane's Algorithm |
| 54 | + |
| 55 | +""" |
| 56 | +Kadane's Algorithm is an efficient method to find the maximum |
| 57 | +sum of a contiguous subarray within a one-dimensional array of |
| 58 | +numbers. It maintains two key values as we traverse the array: |
| 59 | +the current maximum sum ending at the current index and the |
| 60 | +global maximum sum found so far. |
| 61 | +""" |
| 62 | +# Advantages |
| 63 | +""" |
| 64 | +- Efficiency**: Runs in linear time, `O(n)`. |
| 65 | +- Simplicity**: Straightforward to implement and understand. |
| 66 | +- Versatility**: Easily adaptable to related problems. |
| 67 | +""" |
| 68 | + |
| 69 | +### Time Complexity |
| 70 | +""" |
| 71 | +- Time Complexity**: `O(n)` - processes each element once. |
| 72 | +- Space Complexity**: `O(1)` - uses a fixed amount of extra space. |
| 73 | +""" |
0 commit comments