-
-
Notifications
You must be signed in to change notification settings - Fork 46.6k
/
Copy pathlowest_common_ancestor.py
165 lines (147 loc) · 4.63 KB
/
lowest_common_ancestor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# https://en.wikipedia.org/wiki/Lowest_common_ancestor
# https://en.wikipedia.org/wiki/Breadth-first_search
from __future__ import annotations
from queue import Queue
def swap(a: int, b: int) -> tuple[int, int]:
"""
Return a tuple (b, a) when given two integers a and b
>>> swap(2,3)
(3, 2)
>>> swap(3,-4)
(-4, 3)
"""
a ^= b
b ^= a
a ^= b
return a, b
def create_sparse(max_node: int, parent: list[list[int]]) -> list[list[int]]:
"""
creating sparse table which saves each nodes 2^i-th parent
>>> max_node = 6
>>> parent = [[0, 0, 1, 1, 2, 2, 3]] + [[0] * 7 for _ in range(19)]
>>> parent = create_sparse(max_node, parent)
>>> parent[0]
[0, 0, 1, 1, 2, 2, 3]
>>> parent[1]
[0, 0, 0, 0, 1, 1, 1]
>>> parent[2]
[0, 0, 0, 0, 0, 0, 0]
>>> max_node = 1
>>> parent = [[0, 0]] + [[0] * 2 for _ in range(19)]
>>> parent = create_sparse(max_node, parent)
>>> parent[0]
[0, 0]
>>> parent[1]
[0, 0]
"""
j = 1
while (1 << j) < max_node:
for i in range(1, max_node + 1):
parent[j][i] = parent[j - 1][parent[j - 1][i]]
j += 1
return parent
# returns lca of node u,v
def lowest_common_ancestor(
u: int, v: int, level: list[int], parent: list[list[int]]
) -> int:
"""
Return the lowest common ancestor between u and v
>>> level = [-1, 0, 1, 1, 2, 2, 2]
>>> parent = [[0, 0, 1, 1, 2, 2, 3],[0, 0, 0, 0, 1, 1, 1]] + \
[[0] * 7 for _ in range(17)]
>>> lowest_common_ancestor(4, 5, level, parent)
2
>>> lowest_common_ancestor(4, 6, level, parent)
1
>>> lowest_common_ancestor(2, 3, level, parent)
1
>>> lowest_common_ancestor(6, 6, level, parent)
6
"""
# u must be deeper in the tree than v
if level[u] < level[v]:
u, v = swap(u, v)
# making depth of u same as depth of v
for i in range(18, -1, -1):
if level[u] - (1 << i) >= level[v]:
u = parent[i][u]
# at the same depth if u==v that mean lca is found
if u == v:
return u
# moving both nodes upwards till lca in found
for i in range(18, -1, -1):
if parent[i][u] not in [0, parent[i][v]]:
u, v = parent[i][u], parent[i][v]
# returning longest common ancestor of u,v
return parent[0][u]
# runs a breadth first search from root node of the tree
def breadth_first_search(
level: list[int],
parent: list[list[int]],
max_node: int,
graph: dict[int, list[int]],
root: int = 1,
) -> tuple[list[int], list[list[int]]]:
"""
sets every nodes direct parent
parent of root node is set to 0
calculates depth of each node from root node
>>> level = [-1] * 7
>>> parent = [[0] * 7 for _ in range(20)]
>>> graph = {1: [2, 3], 2: [4, 5], 3: [6], 4: [], 5: [], 6: []}
>>> level, parent = breadth_first_search(level, parent, 6, graph, 1)
>>> level
[-1, 0, 1, 1, 2, 2, 2]
>>> parent[0]
[0, 0, 1, 1, 2, 2, 3]
>>> level = [-1] * 2
>>> parent = [[0] * 2 for _ in range(20)]
>>> graph = {1: []}
>>> level, parent = breadth_first_search(level, parent, 1, graph, 1)
>>> level
[-1, 0]
>>> parent[0]
[0, 0]
"""
level[root] = 0
q: Queue[int] = Queue(maxsize=max_node)
q.put(root)
while q.qsize() != 0:
u = q.get()
for v in graph[u]:
if level[v] == -1:
level[v] = level[u] + 1
q.put(v)
parent[0][v] = u
return level, parent
def main() -> None:
max_node = 13
# initializing with 0
parent = [[0 for _ in range(max_node + 10)] for _ in range(20)]
# initializing with -1 which means every node is unvisited
level = [-1 for _ in range(max_node + 10)]
graph: dict[int, list[int]] = {
1: [2, 3, 4],
2: [5],
3: [6, 7],
4: [8],
5: [9, 10],
6: [11],
7: [],
8: [12, 13],
9: [],
10: [],
11: [],
12: [],
13: [],
}
level, parent = breadth_first_search(level, parent, max_node, graph, 1)
parent = create_sparse(max_node, parent)
print("LCA of node 1 and 3 is: ", lowest_common_ancestor(1, 3, level, parent))
print("LCA of node 5 and 6 is: ", lowest_common_ancestor(5, 6, level, parent))
print("LCA of node 7 and 11 is: ", lowest_common_ancestor(7, 11, level, parent))
print("LCA of node 6 and 7 is: ", lowest_common_ancestor(6, 7, level, parent))
print("LCA of node 4 and 12 is: ", lowest_common_ancestor(4, 12, level, parent))
print("LCA of node 8 and 8 is: ", lowest_common_ancestor(8, 8, level, parent))
if __name__ == "__main__":
main()