-
-
Notifications
You must be signed in to change notification settings - Fork 46.6k
/
Copy pathsol1.py
38 lines (27 loc) · 1.1 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
"""
We shall define a square lamina to be a square outline with a square "hole" so that
the shape possesses vertical and horizontal symmetry. For example, using exactly
thirty-two square tiles we can form two different square laminae:
With one-hundred tiles, and not necessarily using all of the tiles at one time, it is
possible to form forty-one different square laminae.
Using up to one million tiles how many different square laminae can be formed?
"""
from math import ceil, sqrt
def solution():
"""
Return the number of different square laminae that can be formed using up to
one million tiles.
"""
LIMIT = 10 ** 6
answer = 0
for outer_width in range(3, (LIMIT // 4) + 2):
if outer_width ** 2 > LIMIT:
hole_width_lower_bound = max(ceil(sqrt(outer_width ** 2 - LIMIT)), 1)
else:
hole_width_lower_bound = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(solution())