-
-
Notifications
You must be signed in to change notification settings - Fork 46.6k
/
Copy pathsol2.py
48 lines (33 loc) · 1.12 KB
/
sol2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
Project Euler Problem 73: https://projecteuler.net/problem=73
Consider the fraction, n/d, where n and d are positive integers.
If n<d and HCF(n,d)=1, it is called a reduced proper fraction.
If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size,
we get:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3,
5/7, 3/4, 4/5, 5/6, 6/7, 7/8
It can be seen that there are 3 fractions between 1/3 and 1/2.
How many fractions lie between 1/3 and 1/2 in the sorted set
of reduced proper fractions for d ≤ 12,000?
"""
def solution(limit: int = 12_000) -> int:
"""
Returns number of fractions lie between 1/3 and 1/2 in the sorted set
of reduced proper fractions for d ≤ max_d
>>> solution(4)
0
>>> solution(5)
1
>>> solution(8)
3
"""
phi = list(range(limit + 1))
count = 0
for d in range(2, limit + 1):
if phi[d] == d:
for j in range(d, limit + 1, d):
phi[j] -= phi[j] // d
count += phi[d] // 2 - phi[(d + 2) // 3]
return count
if __name__ == "__main__":
print(f"{solution() = }")