-
-
Notifications
You must be signed in to change notification settings - Fork 46.6k
/
Copy pathbinary_focal_cross_entropy.py
71 lines (56 loc) · 2.13 KB
/
binary_focal_cross_entropy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
Binary Focal Cross-Entropy (BFCE) Loss Function
Description:
Quantifies dissimilarity between true labels (0 or 1) and predicted probabilities.
It's a variation of binary cross-entropy that addresses class imbalance by
focusing on hard examples.
Formula:
Focal Loss = -Σ(alpha * (1 - y_pred)**gamma * y_true * log(y_pred)
+ (1 - alpha) * y_pred**gamma * (1 - y_true) * log(1 - y_pred))
Source:
[Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf)
"""
import numpy as np
def binary_focal_cross_entropy(
y_true: np.ndarray,
y_pred: np.ndarray,
gamma: float = 2.0,
alpha: float = 0.25,
epsilon: float = 1e-15,
) -> float:
"""
Calculate the BFCE Loss between true labels and predicted probabilities.
Parameters:
- y_true: True binary labels (0 or 1).
- y_pred: Predicted probabilities for class 1.
- gamma: Focusing parameter for modulating the loss (default: 2.0).
- alpha: Weighting factor for class 1 (default: 0.25).
- epsilon: Small constant to avoid numerical instability.
Returns:
- bcfe_loss: Binary Focal Cross-Entropy Loss.
Example Usage:
>>> true_labels = np.array([0, 1, 1, 0, 1])
>>> predicted_probs = np.array([0.2, 0.7, 0.9, 0.3, 0.8])
>>> binary_focal_cross_entropy(true_labels, predicted_probs)
0.008257977659239775
>>> true_labels = np.array([0, 1, 1, 0, 1])
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
>>> binary_focal_cross_entropy(true_labels, predicted_probs)
Traceback (most recent call last):
...
ValueError: Input arrays must have the same length.
"""
if len(y_true) != len(y_pred):
raise ValueError("Input arrays must have the same length.")
# Clip predicted probabilities to avoid log(0) and log(1)
y_pred = np.clip(y_pred, epsilon, 1 - epsilon)
# Focal loss calculation
bcfe_loss = -(
alpha * (1 - y_pred) ** gamma * y_true * np.log(y_pred)
+ (1 - alpha) * y_pred**gamma * (1 - y_true) * np.log(1 - y_pred)
)
# Take the mean over all samples
return np.mean(bcfe_loss)
if __name__ == "__main__":
import doctest
doctest.testmod()