-
-
Notifications
You must be signed in to change notification settings - Fork 46.7k
/
Copy pathgaussian_fuzzyset.py
110 lines (89 loc) · 3.35 KB
/
gaussian_fuzzyset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""
By @Shreya123714
https://en.wikipedia.org/wiki/Fuzzy_set
https://en.wikipedia.org/wiki/Fuzzy_set_operations
https://en.wikipedia.org/wiki/Membership_function_(mathematics)
"""
from __future__ import annotations
from dataclasses import dataclass
import matplotlib.pyplot as plt
import numpy as np
@dataclass
class GaussianFuzzySet:
"""
A class for representing and manipulating Gaussian fuzzy sets.
Attributes:
name: The name or label of the fuzzy set.
mean: The mean value (center) of the Gaussianfuzzy set.
std_dev: The standard deviation (controls the spread) of
the Gaussian fuzzy set.
is_complement: Indicates whether this is the complement
of the original fuzzy set.
Methods:
membership(x): Calculate the membership value of an input 'x' in the fuzzy set.
complement(): Create a new GaussianFuzzySet instance representing the complement.
plot(): Plot the membership function of the fuzzy set.
>>> fuzzy_set = GaussianFuzzySet("Medium Temperature", mean=25, std_dev=5)
>>> fuzzy_set.membership(25)
1.0
>>> fuzzy_set.membership(30)
0.6065306597126334
>>> fuzzy_set.complement().membership(25)
0.0
"""
name: str
mean: float
std_dev: float
is_complement: bool = False # This flag indicates if it's the complement set
def membership(self, x: float) -> float:
"""
Calculate the membership value of an input 'x' in the Gaussian fuzzy set.
If it's a complement set, returns 1 - the Gaussian membership.
>>> GaussianFuzzySet("Medium", 0, 1).membership(0)
1.0
>>> GaussianFuzzySet("Medium", 0, 1).membership(1)
0.6065306597126334
"""
membership_value = np.exp(-0.5 * ((x - self.mean) / self.std_dev) ** 2)
# Directly return for non-complement or return 1 - membership for complement
return membership_value if not self.is_complement else 1 - membership_value
def complement(self) -> GaussianFuzzySet:
"""
Create a new GaussianFuzzySet instance representing the complement.
>>> GaussianFuzzySet("Medium", 0, 1).complement().membership(0)
0.0
"""
return GaussianFuzzySet(
f"¬{self.name}",
self.mean,
self.std_dev,
is_complement=not self.is_complement,
)
def plot(self):
"""
Plot the membership function of the Gaussian fuzzy set.
"""
x = np.linspace(
self.mean - 3 * self.std_dev, self.mean + 3 * self.std_dev, 1000
)
y = [self.membership(xi) for xi in x]
plt.plot(x, y, label=self.name)
plt.xlabel("x")
plt.ylabel("Membership")
plt.legend()
if __name__ == "__main__":
from doctest import testmod
testmod()
# Create an instance of GaussianFuzzySet
fuzzy_set = GaussianFuzzySet("Medium Temperature", mean=25, std_dev=5)
# Display some membership values
print(f"Membership at mean (25): {fuzzy_set.membership(25)}")
print(f"Membership at 30: {fuzzy_set.membership(30)}")
print(
f"Complement Membership at mean (25): {fuzzy_set.complement().membership(25)}"
)
# Plot the Gaussian Fuzzy Set and its complement
fuzzy_set.plot()
fuzzy_set.complement().plot()
plt.title("Gaussian Fuzzy Set and its Complement")
plt.show()