-
-
Notifications
You must be signed in to change notification settings - Fork 46.7k
/
Copy pathbinomial_distribution.py
58 lines (46 loc) · 1.84 KB
/
binomial_distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"""For more information about the Binomial Distribution -
https://en.wikipedia.org/wiki/Binomial_distribution"""
def binomial_distribution(successes: int, trials: int, prob: float) -> float:
"""
Returns probability of k successes out of n tries,
with p probability for one success
The function uses the factorial function
in order to calculate the binomial coefficient
>>> binomial_distribution(3, 5, 0.7)
0.30870000000000003
>>> binomial_distribution (2, 4, 0.5)
0.375
"""
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""")
if trials < 0 or successes < 0:
raise ValueError("the function is defined for non-negative integers")
if type(successes) != int or type(trials) != int:
raise ValueError("the function is defined for non-negative integers")
if prob > 1 or prob < 0:
raise ValueError("prob has to be in range of 1 - 0")
probability = (prob**successes)*(1-prob)**(trials-successes)
# Calculate the binomial coefficient:
# Calculate n! / k!(n-k)!
coefficient = factorial(trials)
coefficient /= (factorial(successes)*factorial(trials-successes))
return probability * coefficient
# Implementation of the factorial function,
# used to calculate the binomial coefficient:
def factorial(n) -> int:
"""
Factorial - The product of all positive integers less than or equal to n
"""
if type(n) != int:
raise ValueError("factorial(n) accepts only integer values")
if n < 0:
raise ValueError("factorial(n) works only for non-negative numbers")
if n == 0:
return 1
result = 1
for i in range(1, n+1):
result *= i
return result
if __name__ == "__main__":
from doctest import testmod
testmod()