-
-
Notifications
You must be signed in to change notification settings - Fork 46.7k
/
Copy pathartificial_neural_network.py
180 lines (148 loc) · 5.83 KB
/
artificial_neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
class SimpleANN:
"""
Simple Artificial Neural Network (ANN)
- Feedforward Neural Network with 1 hidden layer and Sigmoid activation.
- Uses Gradient Descent for backpropagation and Mean Squared Error (MSE)
as the loss function.
- Example demonstrates solving the XOR problem.
"""
def __init__(
self,
input_size: int,
hidden_size: int,
output_size: int,
learning_rate: float = 0.1,
) -> None:
"""
Initialize the neural network with random weights and biases.
Args:
input_size (int): Number of input features.
hidden_size (int): Number of neurons in the hidden layer.
output_size (int): Number of neurons in the output layer.
learning_rate (float): Learning rate for gradient descent.
Example:
>>> ann = SimpleANN(2, 2, 1)
>>> isinstance(ann, SimpleANN)
True
"""
rng = np.random.default_rng()
self.weights_input_hidden = rng.standard_normal((input_size, hidden_size))
self.weights_hidden_output = rng.standard_normal((hidden_size, output_size))
self.bias_hidden = np.zeros((1, hidden_size))
self.bias_output = np.zeros((1, output_size))
self.learning_rate = learning_rate
def sigmoid(self, value: np.ndarray) -> np.ndarray:
"""
Sigmoid activation function.
Args:
value (ndarray): Input value for activation.
Returns:
ndarray: Activated output using sigmoid function.
Example:
>>> ann = SimpleANN(2, 2, 1)
>>> ann.sigmoid(np.array([0]))
array([0.5])
"""
return 1 / (1 + np.exp(-value))
def sigmoid_derivative(self, sigmoid_output: np.ndarray) -> np.ndarray:
"""
Derivative of the sigmoid function.
Args:
sigmoid_output (ndarray): Output after applying the sigmoid function.
Returns:
ndarray: Derivative of the sigmoid function.
Example:
>>> ann = SimpleANN(2, 2, 1)
>>> output = ann.sigmoid(np.array([0])) # Use input 0 for testing
>>> ann.sigmoid_derivative(output)
array([0.25])
"""
return sigmoid_output * (1 - sigmoid_output)
def feedforward(self, inputs: np.ndarray) -> np.ndarray:
"""
Perform forward propagation through the network.
Args:
inputs (ndarray): Input features for the network.
Returns:
ndarray: Output from the network after feedforward pass.
Example:
>>> ann = SimpleANN(2, 2, 1)
>>> inputs = np.array([[0, 0], [1, 1]])
>>> ann.feedforward(inputs).shape
(2, 1)
"""
self.hidden_input = np.dot(inputs, self.weights_input_hidden) + self.bias_hidden
self.hidden_output = self.sigmoid(self.hidden_input)
self.final_input = (
np.dot(self.hidden_output, self.weights_hidden_output) + self.bias_output
)
self.final_output = self.sigmoid(self.final_input)
return self.final_output
def backpropagation(
self, inputs: np.ndarray, targets: np.ndarray, outputs: np.ndarray
) -> None:
"""
Perform backpropagation to adjust the weights and biases.
Args:
inputs (ndarray): Input features.
targets (ndarray): True output labels.
outputs (ndarray): Output predicted by the network.
Example:
>>> ann = SimpleANN(2, 2, 1)
>>> inputs = np.array([[0, 0], [1, 1]])
>>> outputs = ann.feedforward(inputs)
>>> targets = np.array([[0], [1]])
>>> ann.backpropagation(inputs, targets, outputs)
"""
error = targets - outputs
output_gradient = error * self.sigmoid_derivative(outputs)
hidden_error = output_gradient.dot(self.weights_hidden_output.T)
hidden_gradient = hidden_error * self.sigmoid_derivative(self.hidden_output)
self.weights_hidden_output += (
self.hidden_output.T.dot(output_gradient) * self.learning_rate
)
self.bias_output += (
np.sum(output_gradient, axis=0, keepdims=True) * self.learning_rate
)
self.weights_input_hidden += inputs.T.dot(hidden_gradient) * self.learning_rate
self.bias_hidden += (
np.sum(hidden_gradient, axis=0, keepdims=True) * self.learning_rate
)
def train(
self, inputs: np.ndarray, targets: np.ndarray, epochs: int = 10000
) -> None:
"""
Train the neural network on the given input and target data.
Args:
inputs (ndarray): Input features for training.
targets (ndarray): True labels for training.
epochs (int): Number of training iterations.
verbose (bool): Whether to print loss every 1000 epochs.
Example:
>>> ann = SimpleANN(2, 2, 1)
>>> inputs = np.array([[0, 0], [1, 1]])
>>> targets = np.array([[0], [1]])
>>> ann.train(inputs, targets, epochs=1, verbose=False)
"""
for epoch in range(epochs):
outputs = self.feedforward(inputs)
self.backpropagation(inputs, targets, outputs)
if verbose and epoch % 1000 == 0:
loss = np.mean(np.square(targets - outputs))
print(f"Epoch {epoch}, Loss: {loss}")
def predict(self, inputs: np.ndarray) -> np.ndarray:
"""
Predict the output for new input data.
Args:
inputs (ndarray): Input data for prediction.
Returns:
ndarray: Predicted output from the network.
Example:
>>> ann = SimpleANN(2, 2, 1)
>>> inputs = np.array([[0, 0], [1, 1]])
>>> ann.predict(inputs).shape
(2, 1)
"""
return self.feedforward(inputs)
if __name__ == "__main__":