-
-
Notifications
You must be signed in to change notification settings - Fork 46.6k
/
Copy pathdbscan.py
299 lines (268 loc) · 8.75 KB
/
dbscan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
"""
Author : Gowtham Kamalasekar
LinkedIn : https://www.linkedin.com/in/gowtham-kamalasekar/
"""
import math
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import pandas as pd
class DbScan:
"""
DBSCAN Algorithm :
Density-Based Spatial Clustering Of Applications With Noise
Refer this website for more details : https://en.wikipedia.org/wiki/DBSCAN
Functions:
----------
__init__() : Constructor that sets minPts, radius and file
perform_dbscan() : Invoked by constructor and calculates the core
and noise points and returns a dictionary.
print_dbscan() : Prints the core and noise points along
with stating if the noise are border points or not.
plot_dbscan() : Plots the points to show the core and noise point.
To create a object
------------------
import dbscan
obj = dbscan.DbScan(minpts, radius, file)
obj.print_dbscan()
obj.plot_dbscan()
"""
def __init__(
self,
minpts: int,
radius: int,
file: str = "None",
) -> None:
"""
Constructor
Args:
-----------
minpts (int) : Minimum number of points needed to be
within the radius to considered as core
radius (int) : The radius from a given core point where
other core points can be considered as core
file (csv) : CSV file location. Should contain x and y
coordinate value for each point.
Example :
minPts = 4
radius = 1.9
file = 'data_dbscan.csv'
File Structure of CSV Data:
---------------------------
_____
x | y
-----
3 | 7
4 | 6
5 | 5
6 | 4
7 | 3
-----
"""
self.minpts = minpts
self.radius = radius
self.file = (
file
if file != "None"
else (
{"x": 3, "y": 7},
{"x": 4, "y": 6},
{"x": 5, "y": 5},
{"x": 6, "y": 4},
{"x": 7, "y": 3},
{"x": 6, "y": 2},
{"x": 7, "y": 2},
{"x": 8, "y": 4},
{"x": 3, "y": 3},
{"x": 2, "y": 6},
{"x": 3, "y": 5},
{"x": 2, "y": 4},
)
)
self.dict1 = self.perform_dbscan()
def perform_dbscan(self) -> dict[int, list[int]]:
"""
Args:
-----------
None
Return:
--------
Dictionary with points and the list
of points that lie in its radius
>>> result = DbScan(4, 1.9).perform_dbscan()
>>> for key in sorted(result):
... print(key, sorted(result[key]))
1 [1, 2, 10]
2 [1, 2, 3, 11]
3 [2, 3, 4]
4 [3, 4, 5]
5 [4, 5, 6, 7, 8]
6 [5, 6, 7]
7 [5, 6, 7]
8 [5, 8]
9 [9, 12]
10 [1, 10, 11]
11 [2, 10, 11, 12]
12 [9, 11, 12]
>>> result = DbScan(3, 2.5).perform_dbscan()
>>> for key in sorted(result):
... print(key, sorted(result[key]))
1 [1, 2, 10, 11]
2 [1, 2, 3, 10, 11]
3 [2, 3, 4, 11]
4 [3, 4, 5, 6, 7, 8]
5 [4, 5, 6, 7, 8]
6 [4, 5, 6, 7]
7 [4, 5, 6, 7, 8]
8 [4, 5, 7, 8]
9 [9, 11, 12]
10 [1, 2, 10, 11, 12]
11 [1, 2, 3, 9, 10, 11, 12]
12 [9, 10, 11, 12]
>>> result = DbScan(5, 2.5).perform_dbscan()
>>> for key in sorted(result):
... print(key, sorted(result[key]))
1 [1, 2, 10, 11]
2 [1, 2, 3, 10, 11]
3 [2, 3, 4, 11]
4 [3, 4, 5, 6, 7, 8]
5 [4, 5, 6, 7, 8]
6 [4, 5, 6, 7]
7 [4, 5, 6, 7, 8]
8 [4, 5, 7, 8]
9 [9, 11, 12]
10 [1, 2, 10, 11, 12]
11 [1, 2, 3, 9, 10, 11, 12]
12 [9, 10, 11, 12]
"""
if type(self.file) is str:
data = pd.read_csv(self.file)
else:
data = pd.DataFrame(list(self.file))
e = self.radius
dict1: dict[int, list[int]] = {}
for i in range(len(data)):
for j in range(len(data)):
dist = math.sqrt(
pow(data["x"][j] - data["x"][i], 2)
+ pow(data["y"][j] - data["y"][i], 2)
)
if dist < e:
if i + 1 in dict1:
dict1[i + 1].append(j + 1)
else:
dict1[i + 1] = [
j + 1,
]
return dict1
def print_dbscan(self) -> None:
"""
Outputs:
--------
Prints each point and if it is a core or a noise (w/ border)
>>> DbScan(4,1.9).print_dbscan()
1 [1, 2, 10] ---> Noise ---> Border
2 [1, 2, 3, 11] ---> Core
3 [2, 3, 4] ---> Noise ---> Border
4 [3, 4, 5] ---> Noise ---> Border
5 [4, 5, 6, 7, 8] ---> Core
6 [5, 6, 7] ---> Noise ---> Border
7 [5, 6, 7] ---> Noise ---> Border
8 [5, 8] ---> Noise ---> Border
9 [9, 12] ---> Noise
10 [1, 10, 11] ---> Noise ---> Border
11 [2, 10, 11, 12] ---> Core
12 [9, 11, 12] ---> Noise ---> Border
>>> DbScan(5,2.5).print_dbscan()
1 [1, 2, 10, 11] ---> Noise ---> Border
2 [1, 2, 3, 10, 11] ---> Core
3 [2, 3, 4, 11] ---> Noise ---> Border
4 [3, 4, 5, 6, 7, 8] ---> Core
5 [4, 5, 6, 7, 8] ---> Core
6 [4, 5, 6, 7] ---> Noise ---> Border
7 [4, 5, 6, 7, 8] ---> Core
8 [4, 5, 7, 8] ---> Noise ---> Border
9 [9, 11, 12] ---> Noise ---> Border
10 [1, 2, 10, 11, 12] ---> Core
11 [1, 2, 3, 9, 10, 11, 12] ---> Core
12 [9, 10, 11, 12] ---> Noise ---> Border
>>> DbScan(2,0.5).print_dbscan()
1 [1] ---> Noise
2 [2] ---> Noise
3 [3] ---> Noise
4 [4] ---> Noise
5 [5] ---> Noise
6 [6] ---> Noise
7 [7] ---> Noise
8 [8] ---> Noise
9 [9] ---> Noise
10 [10] ---> Noise
11 [11] ---> Noise
12 [12] ---> Noise
"""
for i in self.dict1:
print(i, " ", self.dict1[i], end=" ---> ")
if len(self.dict1[i]) >= self.minpts:
print("Core")
else:
for j in self.dict1:
if (
i != j
and len(self.dict1[j]) >= self.minpts
and i in self.dict1[j]
):
print("Noise ---> Border")
break
else:
print("Noise")
def plot_dbscan(self) -> None:
"""
Output:
-------
A matplotlib plot that show points as core and noise along
with the circle that lie within it.
>>> DbScan(4,1.9).plot_dbscan()
Plotted Successfully
>>> DbScan(5,2.5).plot_dbscan()
Plotted Successfully
>>> DbScan(5,2.5).plot_dbscan()
Plotted Successfully
"""
if type(self.file) is str:
data = pd.read_csv(self.file)
else:
data = pd.DataFrame(list(self.file))
e = self.radius
for i in self.dict1:
if len(self.dict1[i]) >= self.minpts:
plt.scatter(data["x"][i - 1], data["y"][i - 1], color="red")
circle = plt.Circle(
(data["x"][i - 1], data["y"][i - 1]), e, color="blue", fill=False
)
plt.gca().add_artist(circle)
plt.text(
data["x"][i - 1],
data["y"][i - 1],
"P" + str(i),
ha="center",
va="bottom",
)
else:
plt.scatter(data["x"][i - 1], data["y"][i - 1], color="green")
plt.text(
data["x"][i - 1],
data["y"][i - 1],
"P" + str(i),
ha="center",
va="bottom",
)
core_legend = mpatches.Patch(color="red", label="Core")
noise_legend = mpatches.Patch(color="green", label="Noise")
plt.xlabel("X")
plt.ylabel("Y")
plt.title("DBSCAN Clustering")
plt.legend(handles=[core_legend, noise_legend])
plt.show()
print("Plotted Successfully")
if __name__ == "__main__":
import doctest
doctest.testmod()