-
-
Notifications
You must be signed in to change notification settings - Fork 46.6k
/
Copy pathlstm.py
317 lines (240 loc) · 11.9 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
"""
Name - - LSTM - Long Short-Term Memory Network For Sequence Prediction
Goal - - Predict sequences of data
Detail: Total 3 layers neural network
* Input layer
* LSTM layer
* Output layer
Author: Shashank Tyagi
Github: LEVII007
Date: [Current Date]
"""
##### Explanation #####
# This script implements a Long Short-Term Memory (LSTM) network to learn and predict sequences of characters.
# It uses numpy for numerical operations and tqdm for progress visualization.
# The data is a paragraph about LSTM, converted to lowercase and split into characters.
# Each character is one-hot encoded for training.
# The LSTM class initializes weights and biases for the forget, input, candidate, and output gates.
# It also initializes weights and biases for the final output layer.
# The forward method performs forward propagation through the LSTM network, computing hidden and cell states.
# It uses sigmoid and tanh activation functions for the gates and cell states.
# The backward method performs backpropagation through time, computing gradients for the weights and biases.
# It updates the weights and biases using the computed gradients and the learning rate.
# The train method trains the LSTM network on the input data for a specified number of epochs.
# It uses one-hot encoded inputs and computes errors using the softmax function.
# The test method evaluates the trained LSTM network on the input data, computing accuracy based on predictions.
# The script initializes the LSTM network with specified hyperparameters and trains it on the input data.
# Finally, it tests the trained network and prints the accuracy of the predictions.
##### Imports #####
from tqdm import tqdm
import numpy as np
class LSTM:
def __init__(self, data: str, hidden_dim: int = 25, epochs: int = 1000, lr: float = 0.05) -> None:
"""
Initialize the LSTM network with the given data and hyperparameters.
:param data: The input data as a string.
:param hidden_dim: The number of hidden units in the LSTM layer.
:param epochs: The number of training epochs.
:param lr: The learning rate.
"""
self.data = data.lower()
self.hidden_dim = hidden_dim
self.epochs = epochs
self.lr = lr
self.chars = set(self.data)
self.data_size, self.char_size = len(self.data), len(self.chars)
print(f'Data size: {self.data_size}, Char Size: {self.char_size}')
self.char_to_idx = {c: i for i, c in enumerate(self.chars)}
self.idx_to_char = {i: c for i, c in enumerate(self.chars)}
self.train_X, self.train_y = self.data[:-1], self.data[1:]
self.initialize_weights()
##### Helper Functions #####
def one_hot_encode(self, char: str) -> np.ndarray:
"""
One-hot encode a character.
:param char: The character to encode.
:return: A one-hot encoded vector.
"""
vector = np.zeros((self.char_size, 1))
vector[self.char_to_idx[char]] = 1
return vector
def initialize_weights(self) -> None:
"""
Initialize the weights and biases for the LSTM network.
"""
self.wf = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
self.bf = np.zeros((self.hidden_dim, 1))
self.wi = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
self.bi = np.zeros((self.hidden_dim, 1))
self.wc = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
self.bc = np.zeros((self.hidden_dim, 1))
self.wo = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
self.bo = np.zeros((self.hidden_dim, 1))
self.wy = self.init_weights(self.hidden_dim, self.char_size)
self.by = np.zeros((self.char_size, 1))
def init_weights(self, input_dim: int, output_dim: int) -> np.ndarray:
"""
Initialize weights with random values.
:param input_dim: The input dimension.
:param output_dim: The output dimension.
:return: A matrix of initialized weights.
"""
return np.random.uniform(-1, 1, (output_dim, input_dim)) * np.sqrt(6 / (input_dim + output_dim))
##### Activation Functions #####
def sigmoid(self, x: np.ndarray, derivative: bool = False) -> np.ndarray:
"""
Sigmoid activation function.
:param x: The input array.
:param derivative: Whether to compute the derivative.
:return: The sigmoid activation or its derivative.
"""
if derivative:
return x * (1 - x)
return 1 / (1 + np.exp(-x))
def tanh(self, x: np.ndarray, derivative: bool = False) -> np.ndarray:
"""
Tanh activation function.
:param x: The input array.
:param derivative: Whether to compute the derivative.
:return: The tanh activation or its derivative.
"""
if derivative:
return 1 - x ** 2
return np.tanh(x)
def softmax(self, x: np.ndarray) -> np.ndarray:
"""
Softmax activation function.
:param x: The input array.
:return: The softmax activation.
"""
exp_x = np.exp(x - np.max(x))
return exp_x / exp_x.sum(axis=0)
##### LSTM Network Methods #####
def reset(self) -> None:
"""
Reset the LSTM network states.
"""
self.concat_inputs = {}
self.hidden_states = {-1: np.zeros((self.hidden_dim, 1))}
self.cell_states = {-1: np.zeros((self.hidden_dim, 1))}
self.activation_outputs = {}
self.candidate_gates = {}
self.output_gates = {}
self.forget_gates = {}
self.input_gates = {}
self.outputs = {}
def forward(self, inputs: list) -> list:
"""
Perform forward propagation through the LSTM network.
:param inputs: The input data as a list of one-hot encoded vectors.
:return: The outputs of the network.
"""
self.reset()
outputs = []
for t in range(len(inputs)):
self.concat_inputs[t] = np.concatenate((self.hidden_states[t - 1], inputs[t]))
self.forget_gates[t] = self.sigmoid(np.dot(self.wf, self.concat_inputs[t]) + self.bf)
self.input_gates[t] = self.sigmoid(np.dot(self.wi, self.concat_inputs[t]) + self.bi)
self.candidate_gates[t] = self.tanh(np.dot(self.wc, self.concat_inputs[t]) + self.bc)
self.output_gates[t] = self.sigmoid(np.dot(self.wo, self.concat_inputs[t]) + self.bo)
self.cell_states[t] = self.forget_gates[t] * self.cell_states[t - 1] + self.input_gates[t] * self.candidate_gates[t]
self.hidden_states[t] = self.output_gates[t] * self.tanh(self.cell_states[t])
outputs.append(np.dot(self.wy, self.hidden_states[t]) + self.by)
return outputs
def backward(self, errors: list, inputs: list) -> None:
"""
Perform backpropagation through time to compute gradients and update weights.
:param errors: The errors at each time step.
:param inputs: The input data as a list of one-hot encoded vectors.
"""
d_wf, d_bf = 0, 0
d_wi, d_bi = 0, 0
d_wc, d_bc = 0, 0
d_wo, d_bo = 0, 0
d_wy, d_by = 0, 0
dh_next, dc_next = np.zeros_like(self.hidden_states[0]), np.zeros_like(self.cell_states[0])
for t in reversed(range(len(inputs))):
error = errors[t]
# Final Gate Weights and Biases Errors
d_wy += np.dot(error, self.hidden_states[t].T)
d_by += error
# Hidden State Error
d_hs = np.dot(self.wy.T, error) + dh_next
# Output Gate Weights and Biases Errors
d_o = self.tanh(self.cell_states[t]) * d_hs * self.sigmoid(self.output_gates[t], derivative=True)
d_wo += np.dot(d_o, inputs[t].T)
d_bo += d_o
# Cell State Error
d_cs = self.tanh(self.tanh(self.cell_states[t]), derivative=True) * self.output_gates[t] * d_hs + dc_next
# Forget Gate Weights and Biases Errors
d_f = d_cs * self.cell_states[t - 1] * self.sigmoid(self.forget_gates[t], derivative=True)
d_wf += np.dot(d_f, inputs[t].T)
d_bf += d_f
# Input Gate Weights and Biases Errors
d_i = d_cs * self.candidate_gates[t] * self.sigmoid(self.input_gates[t], derivative=True)
d_wi += np.dot(d_i, inputs[t].T)
d_bi += d_i
# Candidate Gate Weights and Biases Errors
d_c = d_cs * self.input_gates[t] * self.tanh(self.candidate_gates[t], derivative=True)
d_wc += np.dot(d_c, inputs[t].T)
d_bc += d_c
# Concatenated Input Error (Sum of Error at Each Gate!)
d_z = np.dot(self.wf.T, d_f) + np.dot(self.wi.T, d_i) + np.dot(self.wc.T, d_c) + np.dot(self.wo.T, d_o)
# Error of Hidden State and Cell State at Next Time Step
dh_next = d_z[:self.hidden_dim, :]
dc_next = self.forget_gates[t] * d_cs
for d_ in (d_wf, d_bf, d_wi, d_bi, d_wc, d_bc, d_wo, d_bo, d_wy, d_by):
np.clip(d_, -1, 1, out=d_)
self.wf += d_wf * self.lr
self.bf += d_bf * self.lr
self.wi += d_wi * self.lr
self.bi += d_bi * self.lr
self.wc += d_wc * self.lr
self.bc += d_bc * self.lr
self.wo += d_wo * self.lr
self.bo += d_bo * self.lr
self.wy += d_wy * self.lr
self.by += d_by * self.lr
def train(self) -> None:
"""
Train the LSTM network on the input data.
"""
inputs = [self.one_hot_encode(char) for char in self.train_X]
for _ in tqdm(range(self.epochs)):
predictions = self.forward(inputs)
errors = []
for t in range(len(predictions)):
errors.append(-self.softmax(predictions[t]))
errors[-1][self.char_to_idx[self.train_y[t]]] += 1
self.backward(errors, self.concat_inputs)
def test(self) -> None:
"""
Test the trained LSTM network on the input data and print the accuracy.
"""
accuracy = 0
probabilities = self.forward([self.one_hot_encode(char) for char in self.train_X])
output = ''
for t in range(len(self.train_y)):
prediction = self.idx_to_char[np.random.choice(range(self.char_size), p=self.softmax(probabilities[t].reshape(-1)))]
output += prediction
if prediction == self.train_y[t]:
accuracy += 1
print(f'Ground Truth:\n{self.train_y}\n')
print(f'Predictions:\n{output}\n')
print(f'Accuracy: {round(accuracy * 100 / len(self.train_X), 2)}%')
##### Data #####
data = """Long Short-Term Memory (LSTM) networks are a type of recurrent neural network (RNN) capable of learning order dependence in sequence prediction problems. This behavior is required in complex problem domains like machine translation, speech recognition, and more. LSTMs are well-suited to classifying, processing, and making predictions based on time series data, since there can be lags of unknown duration between important events in a time series. LSTMs were introduced by Hochreiter and Schmidhuber in 1997, and were refined and popularized by many people in following work. They work by maintaining a cell state that is updated by gates: the forget gate, the input gate, and the output gate. These gates control the flow of information, allowing the network to remember or forget information as needed."""
# Initialize Network
# lstm = LSTM(data=data, hidden_dim=25, epochs=1000, lr=0.05)
##### Training #####
# lstm.train()
##### Testing #####
# lstm.test()
if __name__ == "__main__":
# Initialize Network
# lstm = LSTM(data=data, hidden_dim=25, epochs=1000, lr=0.05)
##### Training #####
# lstm.train()
##### Testing #####
# lstm.test()
# testing can be done by uncommenting the above lines of code.