|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "name": "stderr", |
| 10 | + "output_type": "stream", |
| 11 | + "text": [ |
| 12 | + "C:\\Users\\Hussnain\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\h5py\\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", |
| 13 | + " from ._conv import register_converters as _register_converters\n", |
| 14 | + "Using TensorFlow backend.\n" |
| 15 | + ] |
| 16 | + } |
| 17 | + ], |
| 18 | + "source": [ |
| 19 | + "#Imports\n", |
| 20 | + "from keras.datasets import imdb\n", |
| 21 | + "\n", |
| 22 | + "from keras import models\n", |
| 23 | + "from keras import layers\n", |
| 24 | + "from keras import optimizers\n", |
| 25 | + "from keras import losses\n", |
| 26 | + "from keras import metrics,activations\n", |
| 27 | + "\n", |
| 28 | + "import matplotlib.pyplot as plt" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": null, |
| 34 | + "metadata": {}, |
| 35 | + "outputs": [ |
| 36 | + { |
| 37 | + "name": "stdout", |
| 38 | + "output_type": "stream", |
| 39 | + "text": [ |
| 40 | + "Downloading data from https://s3.amazonaws.com/text-datasets/imdb.npz\n", |
| 41 | + " 1048576/17464789 [>.............................] - ETA: 53:49" |
| 42 | + ] |
| 43 | + } |
| 44 | + ], |
| 45 | + "source": [ |
| 46 | + "#Downloading data from https://s3.amazonaws.com/text-datasets/imdb.npz\n", |
| 47 | + "\n", |
| 48 | + "(xtrain,ytrain), (xtest, ytest) = imdb.load_data(num_words=10000)" |
| 49 | + ] |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "code", |
| 53 | + "execution_count": null, |
| 54 | + "metadata": {}, |
| 55 | + "outputs": [], |
| 56 | + "source": [ |
| 57 | + "#Exploring the dataset\n", |
| 58 | + "\n", |
| 59 | + "print('xtrain shape', xtrain.shape)\n", |
| 60 | + "print('ytrain shape', ytrain.shape)\n", |
| 61 | + "print()\n", |
| 62 | + "print('xtest shape', xtest.shape)\n", |
| 63 | + "print('ytest shape', ytest.shape)\n", |
| 64 | + "print()\n", |
| 65 | + "print('xtrain first review as dictionary index', xtrain[1])\n", |
| 66 | + "print()\n", |
| 67 | + "print()\n", |
| 68 | + "print('ytrain label', ytrain[0])" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": null, |
| 74 | + "metadata": {}, |
| 75 | + "outputs": [], |
| 76 | + "source": [ |
| 77 | + "#index to words mapping\n", |
| 78 | + "word_index = imdb.get_word_index()" |
| 79 | + ] |
| 80 | + }, |
| 81 | + { |
| 82 | + "cell_type": "code", |
| 83 | + "execution_count": null, |
| 84 | + "metadata": {}, |
| 85 | + "outputs": [], |
| 86 | + "source": [ |
| 87 | + "reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": null, |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [], |
| 95 | + "source": [ |
| 96 | + "decode_review = ' '.join([reverse_word_index.get(i-3, reverse_word_index.get(i)) for i in xtrain[22]])\n", |
| 97 | + "decode_review" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "code", |
| 102 | + "execution_count": null, |
| 103 | + "metadata": {}, |
| 104 | + "outputs": [], |
| 105 | + "source": [ |
| 106 | + "import numpy as np\n", |
| 107 | + "\n", |
| 108 | + "def vectorize_sequences(sequences, dimension=10000):\n", |
| 109 | + " results = np.zeros((len(sequences), dimension))\n", |
| 110 | + " for i, sequence in enumerate(sequences):\n", |
| 111 | + " results[i, sequence] = 1. \n", |
| 112 | + " return results\n", |
| 113 | + "\n", |
| 114 | + "x_train = vectorize_sequences(xtrain)\n", |
| 115 | + "x_test = vectorize_sequences(xtest)" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": null, |
| 121 | + "metadata": {}, |
| 122 | + "outputs": [], |
| 123 | + "source": [ |
| 124 | + "ytrain = np.asarray(ytrain).astype('float32')\n", |
| 125 | + "ytest = np.asarray(ytest).astype('float32')" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "code", |
| 130 | + "execution_count": null, |
| 131 | + "metadata": {}, |
| 132 | + "outputs": [], |
| 133 | + "source": [ |
| 134 | + "#model\n", |
| 135 | + "model = models.Sequential()\n", |
| 136 | + "model.add(layers.Dense(16, activation=activations.relu, input_shape=(10000,)))\n", |
| 137 | + "model.add(layers.Dense(16, activation=activations.relu))\n", |
| 138 | + "model.add(layers.Dense(1, activation=activations.sigmoid))" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "code", |
| 143 | + "execution_count": null, |
| 144 | + "metadata": {}, |
| 145 | + "outputs": [], |
| 146 | + "source": [ |
| 147 | + "model.compile(optimizer=optimizers.RMSprop(lr=0.0001), loss=losses.mse, metrics=['acc'])" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": null, |
| 153 | + "metadata": {}, |
| 154 | + "outputs": [], |
| 155 | + "source": [ |
| 156 | + "x_val = x_train[:10000]\n", |
| 157 | + "y_val = ytrain[:10000]\n", |
| 158 | + "\n", |
| 159 | + "x_train_partial = x_train[10000:]\n", |
| 160 | + "y_train_partial = ytrain[10000:]" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "code", |
| 165 | + "execution_count": null, |
| 166 | + "metadata": {}, |
| 167 | + "outputs": [], |
| 168 | + "source": [ |
| 169 | + "history = model.fit(x_train_partial, y_train_partial, epochs=4, batch_size=512, validation_data=(x_val,y_val))\n", |
| 170 | + "history_dict = history.history\n", |
| 171 | + "history_dict.keys()\n", |
| 172 | + "print(history.history['acc'][-1])\n", |
| 173 | + "print(history.history['val_acc'][-1])" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "code", |
| 178 | + "execution_count": null, |
| 179 | + "metadata": {}, |
| 180 | + "outputs": [], |
| 181 | + "source": [ |
| 182 | + "print(model.predict(x_train_partial[22:23]))" |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | + "cell_type": "code", |
| 187 | + "execution_count": null, |
| 188 | + "metadata": {}, |
| 189 | + "outputs": [], |
| 190 | + "source": [ |
| 191 | + "loss = history_dict['loss']\n", |
| 192 | + "val_loss = history_dict['val_loss']\n", |
| 193 | + "epochs = range(0, len(loss)+1)\n", |
| 194 | + "epochs" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "code", |
| 199 | + "execution_count": null, |
| 200 | + "metadata": {}, |
| 201 | + "outputs": [], |
| 202 | + "source": [ |
| 203 | + "%matplotlib\n", |
| 204 | + "acc = history.history['acc']\n", |
| 205 | + "val_acc = history.history['val_acc']\n", |
| 206 | + "loss = history.history['loss']\n", |
| 207 | + "val_loss = history.history['val_loss']\n", |
| 208 | + "\n", |
| 209 | + "epochs = range(1, len(acc) + 1)\n", |
| 210 | + "\n", |
| 211 | + "# \"bo\" is for \"blue dot\"\n", |
| 212 | + "plt.plot(epochs, loss, 'ro', label='Training loss')\n", |
| 213 | + "# b is for \"solid blue line\"\n", |
| 214 | + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", |
| 215 | + "plt.title('Training and validation loss')\n", |
| 216 | + "plt.xlabel('Epochs')\n", |
| 217 | + "plt.ylabel('Loss')\n", |
| 218 | + "plt.legend()\n", |
| 219 | + "\n", |
| 220 | + "plt.show()" |
| 221 | + ] |
| 222 | + }, |
| 223 | + { |
| 224 | + "cell_type": "code", |
| 225 | + "execution_count": null, |
| 226 | + "metadata": {}, |
| 227 | + "outputs": [], |
| 228 | + "source": [ |
| 229 | + "plt.clf() # clear figure# clear \n", |
| 230 | + "acc_values = history_dict['acc']\n", |
| 231 | + "val_acc_values = history_dict['val_acc']\n", |
| 232 | + "\n", |
| 233 | + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", |
| 234 | + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", |
| 235 | + "plt.title('Training and validation accuracy')\n", |
| 236 | + "plt.xlabel('Epochs')\n", |
| 237 | + "plt.ylabel('Loss')\n", |
| 238 | + "plt.legend()\n", |
| 239 | + "\n", |
| 240 | + "plt.show()" |
| 241 | + ] |
| 242 | + }, |
| 243 | + { |
| 244 | + "cell_type": "code", |
| 245 | + "execution_count": null, |
| 246 | + "metadata": {}, |
| 247 | + "outputs": [], |
| 248 | + "source": [] |
| 249 | + }, |
| 250 | + { |
| 251 | + "cell_type": "code", |
| 252 | + "execution_count": null, |
| 253 | + "metadata": {}, |
| 254 | + "outputs": [], |
| 255 | + "source": [] |
| 256 | + } |
| 257 | + ], |
| 258 | + "metadata": { |
| 259 | + "kernelspec": { |
| 260 | + "display_name": "Python 3", |
| 261 | + "language": "python", |
| 262 | + "name": "python3" |
| 263 | + }, |
| 264 | + "language_info": { |
| 265 | + "codemirror_mode": { |
| 266 | + "name": "ipython", |
| 267 | + "version": 3 |
| 268 | + }, |
| 269 | + "file_extension": ".py", |
| 270 | + "mimetype": "text/x-python", |
| 271 | + "name": "python", |
| 272 | + "nbconvert_exporter": "python", |
| 273 | + "pygments_lexer": "ipython3", |
| 274 | + "version": "3.6.5" |
| 275 | + } |
| 276 | + }, |
| 277 | + "nbformat": 4, |
| 278 | + "nbformat_minor": 2 |
| 279 | +} |
0 commit comments