/* Wikipedia -> https://en.wikipedia.org/wiki/Edit_distance Q. -> Given two strings `word1` and `word2`. You can perform these operations on any of the string to make both strings similar. - Insert - Remove - Replace Find the minimum operation cost required to make both same. Each operation cost is 1. Algorithm details -> time complexity - O(n*m) space complexity - O(n*m) */ const minimumEditDistance = (word1, word2) => { const n = word1.length const m = word2.length const dp = new Array(m + 1).fill(0).map((item) => []) /* fill dp matrix with default values - - first row is filled considering no elements in word2. - first column filled considering no elements in word1. */ for (let i = 0; i < n + 1; i++) { dp[0][i] = i } for (let i = 0; i < m + 1; i++) { dp[i][0] = i } /* indexing is 1 based for dp matrix as we defined some known values at first row and first column/ */ for (let i = 1; i < m + 1; i++) { for (let j = 1; j < n + 1; j++) { const letter1 = word1[j - 1] const letter2 = word2[i - 1] if (letter1 === letter2) { dp[i][j] = dp[i - 1][j - 1] } else { dp[i][j] = Math.min(dp[i - 1][j], dp[i - 1][j - 1], dp[i][j - 1]) + 1 } } } return dp[m][n] } export { minimumEditDistance }