Skip to content

Commit a9e17ed

Browse files
committed
Fixed lint issue
1 parent 3c30bce commit a9e17ed

File tree

1 file changed

+90
-91
lines changed

1 file changed

+90
-91
lines changed

Diff for: Graphs/Astar.js

+90-91
Original file line numberDiff line numberDiff line change
@@ -7,102 +7,101 @@
77
*/
88

99
function createGraph(V, E) {
10-
// V - Number of vertices in graph
11-
// E - Number of edges in graph (u,v,w)
12-
const adjList = [] // Adjacency list
13-
for (let i = 0; i < V; i++) {
14-
adjList.push([])
15-
}
16-
for (let i = 0; i < E.length; i++) {
17-
adjList[E[i][0]].push([E[i][1], E[i][2]])
18-
adjList[E[i][1]].push([E[i][0], E[i][2]])
19-
}
20-
return adjList
10+
// V - Number of vertices in graph
11+
// E - Number of edges in graph (u,v,w)
12+
const adjList = [] // Adjacency list
13+
for (let i = 0; i < V; i++) {
14+
adjList.push([])
2115
}
22-
23-
// Heuristic function to estimate the cost to reach the goal
24-
// You can modify this based on your specific problem, for now, we're using Manhattan distance
25-
function heuristic(a, b) {
26-
return Math.abs(a - b)
16+
for (let i = 0; i < E.length; i++) {
17+
adjList[E[i][0]].push([E[i][1], E[i][2]])
18+
adjList[E[i][1]].push([E[i][0], E[i][2]])
2719
}
28-
29-
function aStar(graph, V, src, target) {
30-
const openSet = new Set([src]) // Nodes to explore
31-
const cameFrom = Array(V).fill(-1) // Keep track of path
32-
const gScore = Array(V).fill(Infinity) // Actual cost from start to a node
33-
gScore[src] = 0
34-
35-
const fScore = Array(V).fill(Infinity) // Estimated cost from start to goal (g + h)
36-
fScore[src] = heuristic(src, target)
37-
38-
while (openSet.size > 0) {
39-
// Get the node in openSet with the lowest fScore
40-
let current = -1
41-
openSet.forEach((node) => {
42-
if (current === -1 || fScore[node] < fScore[current]) {
43-
current = node
44-
}
45-
})
46-
47-
// If the current node is the target, reconstruct the path and return
48-
if (current === target) {
49-
const path = []
50-
while (cameFrom[current] !== -1) {
51-
path.push(current)
52-
current = cameFrom[current]
53-
}
54-
path.push(src)
55-
return path.reverse()
20+
return adjList
21+
}
22+
23+
// Heuristic function to estimate the cost to reach the goal
24+
// You can modify this based on your specific problem, for now, we're using Manhattan distance
25+
function heuristic(a, b) {
26+
return Math.abs(a - b)
27+
}
28+
29+
function aStar(graph, V, src, target) {
30+
const openSet = new Set([src]) // Nodes to explore
31+
const cameFrom = Array(V).fill(-1) // Keep track of path
32+
const gScore = Array(V).fill(Infinity) // Actual cost from start to a node
33+
gScore[src] = 0
34+
35+
const fScore = Array(V).fill(Infinity) // Estimated cost from start to goal (g + h)
36+
fScore[src] = heuristic(src, target)
37+
38+
while (openSet.size > 0) {
39+
// Get the node in openSet with the lowest fScore
40+
let current = -1
41+
openSet.forEach((node) => {
42+
if (current === -1 || fScore[node] < fScore[current]) {
43+
current = node
5644
}
57-
58-
openSet.delete(current)
59-
60-
// Explore neighbors
61-
for (let i = 0; i < graph[current].length; i++) {
62-
const neighbor = graph[current][i][0]
63-
const tentative_gScore = gScore[current] + graph[current][i][1]
64-
65-
if (tentative_gScore < gScore[neighbor]) {
66-
cameFrom[neighbor] = current
67-
gScore[neighbor] = tentative_gScore
68-
fScore[neighbor] = gScore[neighbor] + heuristic(neighbor, target)
69-
70-
if (!openSet.has(neighbor)) {
71-
openSet.add(neighbor)
72-
}
45+
})
46+
47+
// If the current node is the target, reconstruct the path and return
48+
if (current === target) {
49+
const path = []
50+
while (cameFrom[current] !== -1) {
51+
path.push(current)
52+
current = cameFrom[current]
53+
}
54+
path.push(src)
55+
return path.reverse()
56+
}
57+
58+
openSet.delete(current)
59+
60+
// Explore neighbors
61+
for (let i = 0; i < graph[current].length; i++) {
62+
const neighbor = graph[current][i][0]
63+
const tentative_gScore = gScore[current] + graph[current][i][1]
64+
65+
if (tentative_gScore < gScore[neighbor]) {
66+
cameFrom[neighbor] = current
67+
gScore[neighbor] = tentative_gScore
68+
fScore[neighbor] = gScore[neighbor] + heuristic(neighbor, target)
69+
70+
if (!openSet.has(neighbor)) {
71+
openSet.add(neighbor)
7372
}
7473
}
7574
}
76-
77-
return [] // Return empty path if there's no path to the target
7875
}
79-
80-
module.exports = { createGraph, aStar }
8176

82-
// const V = 9
83-
// const E = [
84-
// [0, 1, 4],
85-
// [0, 7, 8],
86-
// [1, 7, 11],
87-
// [1, 2, 8],
88-
// [7, 8, 7],
89-
// [6, 7, 1],
90-
// [2, 8, 2],
91-
// [6, 8, 6],
92-
// [5, 6, 2],
93-
// [2, 5, 4],
94-
// [2, 3, 7],
95-
// [3, 5, 14],
96-
// [3, 4, 9],
97-
// [4, 5, 10]
98-
// ]
99-
100-
// const graph = createGraph(V, E)
101-
// const path = aStar(graph, V, 0, 4) // Find path from node 0 to node 4
102-
// console.log(path)
103-
104-
/**
105-
* The function returns the optimal path from the source to the target node.
106-
* The heuristic used is Manhattan distance but it can be modified.
107-
*/
108-
77+
return [] // Return empty path if there's no path to the target
78+
}
79+
80+
module.exports = { createGraph, aStar }
81+
82+
// const V = 9
83+
// const E = [
84+
// [0, 1, 4],
85+
// [0, 7, 8],
86+
// [1, 7, 11],
87+
// [1, 2, 8],
88+
// [7, 8, 7],
89+
// [6, 7, 1],
90+
// [2, 8, 2],
91+
// [6, 8, 6],
92+
// [5, 6, 2],
93+
// [2, 5, 4],
94+
// [2, 3, 7],
95+
// [3, 5, 14],
96+
// [3, 4, 9],
97+
// [4, 5, 10]
98+
// ]
99+
100+
// const graph = createGraph(V, E)
101+
// const path = aStar(graph, V, 0, 4) // Find path from node 0 to node 4
102+
// console.log(path)
103+
104+
/**
105+
* The function returns the optimal path from the source to the target node.
106+
* The heuristic used is Manhattan distance but it can be modified.
107+
*/

0 commit comments

Comments
 (0)