Skip to content

Commit 3b4653f

Browse files
authored
Add files via upload
1 parent 55ff0ad commit 3b4653f

File tree

1 file changed

+45
-0
lines changed

1 file changed

+45
-0
lines changed

Backtracking/HeldKarpAlgorithm.js

+45
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,45 @@
1+
/*
2+
Held-karp algorithm (https://en.wikipedia.org/wiki/Held-Karp_algorithm)
3+
4+
- Held-karp algorithm solves the TSP problem using a dynamic programming paradigm.
5+
- It computes the minimum cost to visit each city exactly once & return to the start point,
6+
considering all subsets of cities & using memoization.
7+
- Comparing it with the Hamiltonian algorithm vs Held-karp algorithm ( n! vs ~2^n), this is more efficient.
8+
*/
9+
10+
function heldKarp(dist) {
11+
const n = dist.length
12+
const memo = Array.from({ length: n }, () => Array(1 << n).fill(null))
13+
14+
// Base case: distance from the starting point to itself is 0
15+
for (let i = 0; i < n; i++) {
16+
memo[i][1 << i] = dist[i][0]
17+
}
18+
19+
// Iterate through all subsets of vertices
20+
for (let mask = 0; mask < (1 << n); mask++) {
21+
for (let u = 0; u < n; u++) {
22+
if (!(mask & (1 << u))) continue // u must be in the subset
23+
// Iterate through all vertices to find the minimum cost
24+
for (let v = 0; v < n; v++) {
25+
if (mask & (1 << v) || u === v) continue; // v must not be in the subset
26+
const newMask = mask | (1 << v)
27+
const newCost = memo[u][mask] + dist[u][v]
28+
29+
if (memo[v][newMask] === null || newCost < memo[v][newMask]) {
30+
memo[v][newMask] = newCost
31+
}
32+
}
33+
}
34+
}
35+
36+
let minCost = Infinity
37+
for (let u = 1; u < n; u++) {
38+
const cost = memo[u][(1 << n) - 1] + dist[u][0]
39+
minCost = Math.min(minCost, cost)
40+
}
41+
42+
return minCost
43+
}
44+
45+
export { heldKarp }

0 commit comments

Comments
 (0)