|
1 | 1 | package com.thealgorithms.audiofilters;
|
2 | 2 |
|
3 |
| -/** |
4 |
| - * Exponential Moving Average (EMA) Filter for smoothing audio signals. |
5 |
| - * |
6 |
| - * <p> |
7 |
| - * This filter applies an exponential moving average to a sequence of audio |
8 |
| - * signal values, making it useful for smoothing out rapid fluctuations. |
9 |
| - * The smoothing factor (alpha) controls the degree of smoothing. |
10 |
| - * |
11 |
| - * <p> |
12 |
| - * Based on the definition from |
13 |
| - * <a href="https://en.wikipedia.org/wiki/Moving_average">Wikipedia link</a>. |
14 |
| - */ |
15 |
| -public class EMAFilter { |
16 |
| - |
17 |
| - private final double alpha; |
18 |
| - private double emaValue; |
19 |
| - |
20 |
| - /** |
21 |
| - * Constructs an EMA filter with a given smoothing factor. |
22 |
| - * |
23 |
| - * @param alpha Smoothing factor (0 < alpha <= 1) |
24 |
| - * @throws IllegalArgumentException if alpha is not in (0, 1] |
25 |
| - */ |
26 |
| - public EMAFilter(double alpha) { |
27 |
| - if (alpha <= 0 || alpha > 1) { |
28 |
| - throw new IllegalArgumentException("Alpha must be between 0 and 1."); |
29 |
| - } |
30 |
| - this.alpha = alpha; |
31 |
| - this.emaValue = 0.0; |
| 3 | +import static org.junit.jupiter.api.Assertions.assertArrayEquals; |
| 4 | +import org.junit.jupiter.api.Test; |
| 5 | + |
| 6 | +public class EMAFilterTest { |
| 7 | + |
| 8 | + @Test |
| 9 | + public void testApplyBasicSignal() { |
| 10 | + EMAFilter emaFilter = new EMAFilter(0.2); |
| 11 | + double[] audioSignal = { 0.1, 0.5, 0.8, 0.6, 0.3, 0.9, 0.4 }; |
| 12 | + double[] expectedOutput = { 0.1, 0.18, 0.304, 0.3632, 0.35056, 0.460448, 0.4483584 }; |
| 13 | + |
| 14 | + double[] result = emaFilter.apply(audioSignal); |
| 15 | + |
| 16 | + assertArrayEquals(expectedOutput, result, 1e-5); |
| 17 | + } |
| 18 | + |
| 19 | + @Test |
| 20 | + public void testApplyEmptySignal() { |
| 21 | + EMAFilter emaFilter = new EMAFilter(0.2); |
| 22 | + double[] audioSignal = {}; |
| 23 | + double[] expectedOutput = {}; |
| 24 | + |
| 25 | + double[] result = emaFilter.apply(audioSignal); |
| 26 | + |
| 27 | + assertArrayEquals(expectedOutput, result); |
32 | 28 | }
|
33 | 29 |
|
34 |
| - /** |
35 |
| - * Applies the EMA filter to an audio signal array. |
36 |
| - * |
37 |
| - * @param audioSignal Array of audio samples to process |
38 |
| - * @return Array of processed (smoothed) samples |
39 |
| - */ |
40 |
| - public double[] apply(double[] audioSignal) { |
41 |
| - if (audioSignal.length == 0) { |
42 |
| - return new double[0]; |
43 |
| - } |
44 |
| - |
45 |
| - double[] emaSignal = new double[audioSignal.length]; |
46 |
| - emaValue = audioSignal[0]; |
47 |
| - emaSignal[0] = emaValue; |
48 |
| - |
49 |
| - for (int i = 1; i < audioSignal.length; i++) { |
50 |
| - emaValue = alpha * audioSignal[i] + (1 - alpha) * emaValue; |
51 |
| - emaSignal[i] = emaValue; |
52 |
| - } |
53 |
| - |
54 |
| - return emaSignal; |
| 30 | + @Test |
| 31 | + public void testAlphaBounds() { |
| 32 | + EMAFilter emaFilterMin = new EMAFilter(0.01); |
| 33 | + EMAFilter emaFilterMax = new EMAFilter(1.0); |
| 34 | + |
| 35 | + double[] audioSignal = { 1.0, 1.0, 1.0, 1.0 }; |
| 36 | + |
| 37 | + // Minimal smoothing (alpha close to 0) |
| 38 | + double[] resultMin = emaFilterMin.apply(audioSignal); |
| 39 | + |
| 40 | + // Maximum smoothing (alpha = 1, output should match input) |
| 41 | + double[] resultMax = emaFilterMax.apply(audioSignal); |
| 42 | + |
| 43 | + assertArrayEquals(audioSignal, resultMax, 1e-5); |
55 | 44 | }
|
56 | 45 | }
|
0 commit comments