|
| 1 | +package com.thealgorithms.backtracking; |
| 2 | + |
| 3 | +import static org.junit.jupiter.api.Assertions.assertArrayEquals; |
| 4 | +import static org.junit.jupiter.api.Assertions.assertThrows; |
| 5 | + |
| 6 | +import java.util.ArrayList; |
| 7 | +import java.util.List; |
| 8 | +import org.junit.jupiter.api.Test; |
| 9 | + |
| 10 | +public class DijkstraTest { |
| 11 | + |
| 12 | + @Test |
| 13 | + void testSingleNodeGraph() { |
| 14 | + // Test case where graph has a single node |
| 15 | + List<List<Dijkstra.Edge>> graph = new ArrayList<>(); |
| 16 | + graph.add(new ArrayList<>()); |
| 17 | + |
| 18 | + Dijkstra dijkstra = new Dijkstra(); |
| 19 | + int[] result = dijkstra.dijkstra(graph, 0); |
| 20 | + |
| 21 | + // Since it's the only node, the distance to itself is 0 |
| 22 | + assertArrayEquals(new int[]{0}, result); |
| 23 | + } |
| 24 | + |
| 25 | + @Test |
| 26 | + void testDisconnectedGraph() { |
| 27 | + // Test case where graph is disconnected |
| 28 | + int V = 3; // 3 nodes in the graph |
| 29 | + List<List<Dijkstra.Edge>> graph = new ArrayList<>(); |
| 30 | + for (int i = 0; i < V; i++) { |
| 31 | + graph.add(new ArrayList<>()); |
| 32 | + } |
| 33 | + |
| 34 | + Dijkstra dijkstra = new Dijkstra(); |
| 35 | + int[] result = dijkstra.dijkstra(graph, 0); |
| 36 | + |
| 37 | + // Node 0 can only reach itself, others should be unreachable (infinity) |
| 38 | + assertArrayEquals(new int[]{0, Integer.MAX_VALUE, Integer.MAX_VALUE}, result); |
| 39 | + } |
| 40 | + |
| 41 | + @Test |
| 42 | + void testSimpleGraph() { |
| 43 | + // Test case for a simple connected graph |
| 44 | + int V = 4; |
| 45 | + List<List<Dijkstra.Edge>> graph = new ArrayList<>(); |
| 46 | + for (int i = 0; i < V; i++) { |
| 47 | + graph.add(new ArrayList<>()); |
| 48 | + } |
| 49 | + |
| 50 | + // Add edges to the graph |
| 51 | + graph.get(0).add(new Dijkstra.Edge(1, 1)); |
| 52 | + graph.get(0).add(new Dijkstra.Edge(2, 4)); |
| 53 | + graph.get(1).add(new Dijkstra.Edge(2, 2)); |
| 54 | + graph.get(1).add(new Dijkstra.Edge(3, 6)); |
| 55 | + graph.get(2).add(new Dijkstra.Edge(3, 3)); |
| 56 | + |
| 57 | + Dijkstra dijkstra = new Dijkstra(); |
| 58 | + int[] result = dijkstra.dijkstra(graph, 0); |
| 59 | + |
| 60 | + // Expected shortest distances from node 0 to all other nodes |
| 61 | + assertArrayEquals(new int[]{0, 1, 3, 6}, result); |
| 62 | + } |
| 63 | + |
| 64 | + @Test |
| 65 | + void testInvalidSourceNode() { |
| 66 | + int V = 3; |
| 67 | + List<List<Dijkstra.Edge>> graph = new ArrayList<>(); |
| 68 | + for (int i = 0; i < V; i++) { |
| 69 | + graph.add(new ArrayList<>()); |
| 70 | + } |
| 71 | + |
| 72 | + Dijkstra dijkstra = new Dijkstra(); |
| 73 | + |
| 74 | + assertThrows(IndexOutOfBoundsException.class, () -> { |
| 75 | + dijkstra.dijkstra(graph, 5); |
| 76 | + }); |
| 77 | + } |
| 78 | + |
| 79 | + @Test |
| 80 | + void testCyclicGraph() { |
| 81 | + // Test case for a cyclic graph |
| 82 | + int V = 3; |
| 83 | + List<List<Dijkstra.Edge>> graph = new ArrayList<>(); |
| 84 | + for (int i = 0; i < V; i++) { |
| 85 | + graph.add(new ArrayList<>()); |
| 86 | + } |
| 87 | + |
| 88 | + graph.get(0).add(new Dijkstra.Edge(1, 2)); |
| 89 | + graph.get(1).add(new Dijkstra.Edge(2, 3)); |
| 90 | + graph.get(2).add(new Dijkstra.Edge(0, 4)); |
| 91 | + |
| 92 | + Dijkstra dijkstra = new Dijkstra(); |
| 93 | + int[] result = dijkstra.dijkstra(graph, 0); |
| 94 | + |
| 95 | + assertArrayEquals(new int[]{0, 2, 5}, result); |
| 96 | + } |
| 97 | +} |
0 commit comments