|
| 1 | +package com.thealgorithms.misc; |
| 2 | + |
| 3 | +import java.util.List; |
| 4 | + |
| 5 | +import static org.junit.jupiter.api.Assertions.assertEquals; |
| 6 | +import static org.junit.jupiter.api.Assertions.assertTrue; |
| 7 | +import org.junit.jupiter.api.Test; |
| 8 | + |
| 9 | +public class FourSumProblemTest { |
| 10 | + |
| 11 | + @Test |
| 12 | + public void testFourSum1_basicCase() { |
| 13 | + FourSumProblem solver = new FourSumProblem(); |
| 14 | + |
| 15 | + // Case 1: Standard case with multiple quadruplets |
| 16 | + int[] nums1 = {1, 0, -1, 0, -2, 2}; |
| 17 | + int target1 = 0; |
| 18 | + List<List<Integer>> result1 = solver.fourSum1(nums1, target1); |
| 19 | + assertEquals(3, result1.size()); // Expect 3 quadruplets |
| 20 | + assertTrue(result1.contains(List.of(-2, -1, 1, 2))); |
| 21 | + assertTrue(result1.contains(List.of(-2, 0, 0, 2))); |
| 22 | + assertTrue(result1.contains(List.of(-1, 0, 0, 1))); |
| 23 | + } |
| 24 | + |
| 25 | + @Test |
| 26 | + public void testFourSum1_edgeCase_emptyArray() { |
| 27 | + FourSumProblem solver = new FourSumProblem(); |
| 28 | + |
| 29 | + // Case 2: Empty array |
| 30 | + int[] nums2 = {}; |
| 31 | + int target2 = 0; |
| 32 | + List<List<Integer>> result2 = solver.fourSum1(nums2, target2); |
| 33 | + assertEquals(0, result2.size()); // Expect no quadruplets |
| 34 | + } |
| 35 | + |
| 36 | + @Test |
| 37 | + public void testFourSum1_edgeCase_noQuadruplet() { |
| 38 | + FourSumProblem solver = new FourSumProblem(); |
| 39 | + |
| 40 | + // Case 3: No valid quadruplets |
| 41 | + int[] nums3 = {1, 2, 3, 4, 5}; |
| 42 | + int target3 = 100; |
| 43 | + List<List<Integer>> result3 = solver.fourSum1(nums3, target3); |
| 44 | + assertEquals(0, result3.size()); // Expect no quadruplets |
| 45 | + } |
| 46 | + |
| 47 | + @Test |
| 48 | + public void testFourSum2_basicCase() { |
| 49 | + FourSumProblem solver = new FourSumProblem(); |
| 50 | + |
| 51 | + // Case 4: Standard case with multiple quadruplets using HashMap approach |
| 52 | + int[] nums1 = {1, 0, -1, 0, -2, 2}; |
| 53 | + int target1 = 0; |
| 54 | + List<List<Integer>> result1 = solver.fourSum2(nums1, target1); |
| 55 | + assertEquals(3, result1.size()); // Expect 3 quadruplets |
| 56 | + assertTrue(result1.contains(List.of(-2, -1, 1, 2))); |
| 57 | + assertTrue(result1.contains(List.of(-2, 0, 0, 2))); |
| 58 | + assertTrue(result1.contains(List.of(-1, 0, 0, 1))); |
| 59 | + } |
| 60 | + |
| 61 | + @Test |
| 62 | + public void testFourSum2_edgeCase_emptyArray() { |
| 63 | + FourSumProblem solver = new FourSumProblem(); |
| 64 | + |
| 65 | + // Case 5: Empty array |
| 66 | + int[] nums2 = {}; |
| 67 | + int target2 = 0; |
| 68 | + List<List<Integer>> result2 = solver.fourSum2(nums2, target2); |
| 69 | + assertEquals(0, result2.size()); // Expect no quadruplets |
| 70 | + } |
| 71 | + |
| 72 | + @Test |
| 73 | + public void testFourSum2_edgeCase_noQuadruplet() { |
| 74 | + FourSumProblem solver = new FourSumProblem(); |
| 75 | + |
| 76 | + // Case 6: No valid quadruplets |
| 77 | + int[] nums3 = {1, 2, 3, 4, 5}; |
| 78 | + int target3 = 100; |
| 79 | + List<List<Integer>> result3 = solver.fourSum2(nums3, target3); |
| 80 | + assertEquals(0, result3.size()); // Expect no quadruplets |
| 81 | + } |
| 82 | + |
| 83 | + @Test |
| 84 | + public void testFourSum2_singleQuadruplet() { |
| 85 | + FourSumProblem solver = new FourSumProblem(); |
| 86 | + |
| 87 | + // Case 7: Single quadruplet in the array |
| 88 | + int[] nums4 = {2, 2, 2, 2, 2}; |
| 89 | + int target4 = 8; |
| 90 | + List<List<Integer>> result4 = solver.fourSum2(nums4, target4); |
| 91 | + assertEquals(1, result4.size()); // Expect only one quadruplet |
| 92 | + assertTrue(result4.contains(List.of(2, 2, 2, 2))); |
| 93 | + } |
| 94 | +} |
0 commit comments