Skip to content

Commit 51021ad

Browse files
authored
Update LinearRegression.java formats
1 parent 564e8b8 commit 51021ad

File tree

1 file changed

+22
-23
lines changed

1 file changed

+22
-23
lines changed

src/main/java/com/thealgorithms/machinelearning/LinearRegression.java

Lines changed: 22 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,7 @@
22
package com.thealgorithms.machinelearning;
33

44
import java.util.ArrayList;
5+
import java.util.List;
56

67
/**
78
* Author : Gowtham Kamalasekar
@@ -15,22 +16,21 @@
1516
*/
1617

1718
class LinearRegression {
18-
private ArrayList<Double> dependentX = new ArrayList<Double>();
19-
private ArrayList<Double> independentY = new ArrayList<Double>();
20-
private double m;
21-
private double c;
19+
private List<Double> dependentX = new ArrayList<Double>();
20+
private List<Double> independentY = new ArrayList<Double>();
21+
private double m;
22+
private double c;
2223

2324
/**
2425
* @param : X (dependent variable), Y (independent variable) as ArrayList
2526
*/
26-
LinearRegression(ArrayList<Double> dependentX,
27-
ArrayList<Double> independentY) {
27+
LinearRegression(List<Double> dependentX, List<Double> independentY) {
2828
this.dependentX = dependentX;
2929
this.independentY = independentY;
3030
this.equate();
3131
}
3232

33-
private double sumation(ArrayList<Double> arr) {
33+
private double sumation(List<Double> arr) {
3434
double sum = 0.0;
3535

3636
for (int i = 0; i < arr.size(); i++) {
@@ -40,9 +40,8 @@ private double sumation(ArrayList<Double> arr) {
4040
return sum;
4141
}
4242

43-
private ArrayList<Double> multiplyNumber(ArrayList<Double> arr1,
44-
ArrayList<Double> arr2) {
45-
ArrayList<Double> temp = new ArrayList<Double>();
43+
private List<Double> multiplyNumber(List<Double> arr1, List<Double> arr2) {
44+
List<Double> temp = new ArrayList<Double>();
4645
for (int i = 0; i < arr1.size(); i++) {
4746
temp.add((arr1.get(i) * arr2.get(i)));
4847
}
@@ -51,22 +50,22 @@ private ArrayList<Double> multiplyNumber(ArrayList<Double> arr1,
5150

5251
private void equate() {
5352
int n = dependentX.size();
54-
this.m = (n * sumation(multiplyNumber(independentY, dependentX))
55-
- (sumation(dependentX) * sumation(independentY)));
56-
this.m = this.m / (n * (sumation(multiplyNumber(dependentX, dependentX)))
57-
- (sumation(dependentX) * sumation(dependentX)));
53+
this.m = (n * sumation(multiplyNumber(independentY, dependentX)) - (sumation(dependentX) * sumation(independentY)));
54+
this.m = this.m / (n * (sumation(multiplyNumber(dependentX, dependentX))) - (sumation(dependentX) * sumation(dependentX)));
5855

59-
this.c = (sumation(independentY)
60-
* sumation(multiplyNumber(dependentX, dependentX))
61-
- (sumation(dependentX)
62-
* sumation(multiplyNumber(independentY, dependentX))));
63-
this.c = this.c / (n * (sumation(multiplyNumber(dependentX, dependentX)))
64-
- (sumation(dependentX) * sumation(dependentX)));
56+
this.c = (sumation(independentY) * sumation(multiplyNumber(dependentX, dependentX)) - (sumation(dependentX) * sumation(multiplyNumber(independentY, dependentX))));
57+
this.c = this.c / (n * (sumation(multiplyNumber(dependentX, dependentX))) - (sumation(dependentX) * sumation(dependentX)));
6558
}
6659

67-
public double getM() { return this.m; }
60+
public double getM() {
61+
return this.m;
62+
}
6863

69-
public double getC() { return this.c; }
64+
public double getC() {
65+
return this.c;
66+
}
7067

71-
public double predictForX(double x) { return (this.m * x) + this.c; }
68+
public double predictForX(double x) {
69+
return (this.m * x) + this.c;
70+
}
7271
}

0 commit comments

Comments
 (0)