|
| 1 | +// Dynamic Programming Java implementation of Matrix |
| 2 | +// Chain Multiplication. |
| 3 | +// See the Cormen book for details of the following |
| 4 | +// algorithm |
| 5 | +import java.util.*; |
| 6 | +import java.io.*; |
| 7 | +class MatrixChainMultiplication |
| 8 | +{ |
| 9 | + |
| 10 | + // Matrix Ai has dimension p[i-1] x p[i] for i = 1..n |
| 11 | + static int MatrixChainOrder(int p[], int n) |
| 12 | + { |
| 13 | + /* For simplicity of the |
| 14 | + program, one extra row and |
| 15 | + one extra column are allocated in m[][]. 0th row |
| 16 | + and 0th column of m[][] are not used */ |
| 17 | + int m[][] = new int[n][n]; |
| 18 | + |
| 19 | + int i, j, k, L, q; |
| 20 | + |
| 21 | + /* m[i, j] = Minimum number of scalar |
| 22 | + multiplications needed to compute the matrix |
| 23 | + A[i]A[i+1]...A[j] = A[i..j] where |
| 24 | + dimension of A[i] is p[i-1] x p[i] */ |
| 25 | + |
| 26 | + // cost is zero when multiplying one matrix. |
| 27 | + for (i = 1; i < n; i++) |
| 28 | + m[i][i] = 0; |
| 29 | + |
| 30 | + // L is chain length. |
| 31 | + for (L = 2; L < n; L++) |
| 32 | + { |
| 33 | + for (i = 1; i < n - L + 1; i++) |
| 34 | + { |
| 35 | + j = i + L - 1; |
| 36 | + if (j == n) |
| 37 | + continue; |
| 38 | + m[i][j] = Integer.MAX_VALUE; |
| 39 | + for (k = i; k <= j - 1; k++) |
| 40 | + { |
| 41 | + // q = cost/scalar multiplications |
| 42 | + q = m[i][k] + m[k + 1][j] |
| 43 | + + p[i - 1] * p[k] * p[j]; |
| 44 | + if (q < m[i][j]) |
| 45 | + m[i][j] = q; |
| 46 | + } |
| 47 | + } |
| 48 | + } |
| 49 | + |
| 50 | + return m[1][n - 1]; |
| 51 | + } |
| 52 | + |
| 53 | + // Driver code |
| 54 | + public static void main(String args[]) |
| 55 | + { |
| 56 | + int arr[] = new int[] { 1, 2, 3, 4 }; |
| 57 | + int size = arr.length; |
| 58 | + |
| 59 | + System.out.println( |
| 60 | + "Minimum number of multiplications is " |
| 61 | + + MatrixChainOrder(arr, size)); |
| 62 | + } |
| 63 | +} |
| 64 | +/* This code is contributed by Rajat Mishra*/ |
0 commit comments