-
Notifications
You must be signed in to change notification settings - Fork 19.9k
/
Copy pathConvexHull.java
117 lines (100 loc) · 3.89 KB
/
ConvexHull.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
package com.thealgorithms.geometry;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.TreeSet;
/**
* A class providing algorithms to compute the convex hull of a set of points
* using brute-force and recursive methods.
*
* Convex hull: The smallest convex polygon that contains all the given points.
*
* Algorithms provided:
* 1. Brute-Force Method
* 2. Recursive (Divide-and-Conquer) Method
*
* @author Hardvan
*/
public final class ConvexHull {
private ConvexHull() {
}
private static boolean checkPointOrientation(Point i, Point j, Point k) {
int detK = Point.orientation(i, j, k);
if (detK > 0) {
return true; // pointsLeftOfIJ
} else if (detK < 0) {
return false; // pointsRightOfIJ
} else {
return k.compareTo(i) >= 0 && k.compareTo(j) <= 0;
}
}
public static List<Point> convexHullBruteForce(List<Point> points) {
Set<Point> convexSet = new TreeSet<>(Comparator.naturalOrder());
for (int i = 0; i < points.size() - 1; i++) {
for (int j = i + 1; j < points.size(); j++) {
boolean allPointsOnOneSide = true;
boolean leftSide = checkPointOrientation(points.get(i), points.get(j), points.get((i + 1) % points.size()));
for (int k = 0; k < points.size(); k++) {
if (k != i && k != j && checkPointOrientation(points.get(i), points.get(j), points.get(k)) != leftSide) {
allPointsOnOneSide = false;
break;
}
}
if (allPointsOnOneSide) {
convexSet.add(points.get(i));
convexSet.add(points.get(j));
}
}
}
return new ArrayList<>(convexSet);
}
public static List<Point> convexHullRecursive(List<Point> points) {
Collections.sort(points);
Set<Point> convexSet = new HashSet<>();
Point leftMostPoint = points.get(0);
Point rightMostPoint = points.get(points.size() - 1);
convexSet.add(leftMostPoint);
convexSet.add(rightMostPoint);
List<Point> upperHull = new ArrayList<>();
List<Point> lowerHull = new ArrayList<>();
for (int i = 1; i < points.size() - 1; i++) {
int det = Point.orientation(leftMostPoint, rightMostPoint, points.get(i));
if (det > 0) {
upperHull.add(points.get(i));
} else if (det < 0) {
lowerHull.add(points.get(i));
}
}
constructHull(upperHull, leftMostPoint, rightMostPoint, convexSet);
constructHull(lowerHull, rightMostPoint, leftMostPoint, convexSet);
List<Point> result = new ArrayList<>(convexSet);
Collections.sort(result);
return result;
}
private static void constructHull(Collection<Point> points, Point left, Point right, Set<Point> convexSet) {
if (!points.isEmpty()) {
Point extremePoint = null;
int extremePointDistance = Integer.MIN_VALUE;
List<Point> candidatePoints = new ArrayList<>();
for (Point p : points) {
int det = Point.orientation(left, right, p);
if (det > 0) {
candidatePoints.add(p);
if (det > extremePointDistance) {
extremePointDistance = det;
extremePoint = p;
}
}
}
if (extremePoint != null) {
constructHull(candidatePoints, left, extremePoint, convexSet);
convexSet.add(extremePoint);
constructHull(candidatePoints, extremePoint, right, convexSet);
}
}
}
}