-
Notifications
You must be signed in to change notification settings - Fork 19.9k
/
Copy pathBresenhamLine.java
69 lines (58 loc) · 2.37 KB
/
BresenhamLine.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
package com.thealgorithms.geometry;
import java.awt.Point;
import java.util.ArrayList;
import java.util.List;
/**
* The {@code BresenhamLine} class implements the Bresenham's line algorithm,
* which is an efficient way to determine the points of a straight line
* between two given points in a 2D space.
*
* <p>This algorithm uses integer arithmetic to calculate the points,
* making it suitable for rasterization in computer graphics.</p>
*
* For more information, please visit {@link https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm}
*/
public final class BresenhamLine {
private BresenhamLine() {
// Private constructor to prevent instantiation.
}
/**
* Finds the list of points that form a straight line between two endpoints.
*
* @param x0 the x-coordinate of the starting point
* @param y0 the y-coordinate of the starting point
* @param x1 the x-coordinate of the ending point
* @param y1 the y-coordinate of the ending point
* @return a {@code List<Point>} containing all points on the line
*/
public static List<Point> findLine(int x0, int y0, int x1, int y1) {
List<Point> line = new ArrayList<>();
// Calculate differences and steps for each axis
int dx = Math.abs(x1 - x0); // Change in x
int dy = Math.abs(y1 - y0); // Change in y
int sx = (x0 < x1) ? 1 : -1; // Step in x direction
int sy = (y0 < y1) ? 1 : -1; // Step in y direction
int err = dx - dy; // Initial error term
// Loop until we reach the endpoint
while (true) {
line.add(new Point(x0, y0)); // Add current point to the line
// Check if we've reached the endpoint
if (x0 == x1 && y0 == y1) {
break; // Exit loop if endpoint is reached
}
// Calculate error term doubled for decision making
final int e2 = err * 2;
// Adjust x coordinate if necessary
if (e2 > -dy) {
err -= dy; // Update error term
x0 += sx; // Move to next point in x direction
}
// Adjust y coordinate if necessary
if (e2 < dx) {
err += dx; // Update error term
y0 += sy; // Move to next point in y direction
}
}
return line; // Return the list of points forming the line
}
}