-
Notifications
You must be signed in to change notification settings - Fork 19.9k
/
Copy pathRodCutting.java
47 lines (42 loc) · 1.85 KB
/
RodCutting.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
package com.thealgorithms.dynamicprogramming;
/**
* A Dynamic Programming solution for the Rod cutting problem.
* Returns the best obtainable price for a rod of length n and price[] as prices of different pieces.
*/
public final class RodCutting {
private RodCutting() {
}
/**
* This method calculates the maximum obtainable value for cutting a rod of length n
* into different pieces, given the prices for each possible piece length.
*
* @param price An array representing the prices of different pieces, where price[i-1]
* represents the price of a piece of length i.
* @param n The length of the rod to be cut.
* @throws IllegalArgumentException if the price array is null or empty, or if n is less than 0.
* @return The maximum obtainable value.
*/
public static int cutRod(int[] price, int n) {
if (price == null || price.length == 0) {
throw new IllegalArgumentException("Price array cannot be null or empty.");
}
if (n < 0) {
throw new IllegalArgumentException("Rod length cannot be negative.");
}
// Create an array to store the maximum obtainable values for each rod length.
int[] val = new int[n + 1];
val[0] = 0;
// Calculate the maximum value for each rod length from 1 to n.
for (int i = 1; i <= n; i++) {
int maxVal = Integer.MIN_VALUE;
// Try all possible ways to cut the rod and find the maximum value.
for (int j = 1; j <= i; j++) {
maxVal = Math.max(maxVal, price[j - 1] + val[i - j]);
}
// Store the maximum value for the current rod length.
val[i] = maxVal;
}
// The final element of 'val' contains the maximum obtainable value for a rod of length 'n'.
return val[n];
}
}