|
1 | 1 | /**
|
2 | 2 | * @file
|
3 |
| - * @brief This program aims at calculating the GCD of n numbers by division |
4 |
| - * method |
| 3 | + * @brief This program aims at calculating the GCD of n numbers |
| 4 | + * |
| 5 | + * @details |
| 6 | + * The GCD of n numbers can be calculated by |
| 7 | + * repeatedly calculating the GCDs of pairs of numbers |
| 8 | + * i.e. \f$\gcd(a, b, c)\f$ = \f$\gcd(\gcd(a, b), c)\f$ |
| 9 | + * Euclidean algorithm helps calculate the GCD of each pair of numbers |
| 10 | + * efficiently |
5 | 11 | *
|
6 | 12 | * @see gcd_iterative_euclidean.cpp, gcd_recursive_euclidean.cpp
|
7 | 13 | */
|
8 |
| -#include <iostream> |
| 14 | +#include <algorithm> /// for std::abs |
| 15 | +#include <array> /// for std::array |
| 16 | +#include <cassert> /// for assert |
| 17 | +#include <iostream> /// for IO operations |
9 | 18 |
|
10 |
| -/** Compute GCD using division algorithm |
11 |
| - * |
12 |
| - * @param[in] a array of integers to compute GCD for |
13 |
| - * @param[in] n number of integers in array `a` |
14 |
| - */ |
15 |
| -int gcd(int *a, int n) { |
16 |
| - int j = 1; // to access all elements of the array starting from 1 |
17 |
| - int gcd = a[0]; |
18 |
| - while (j < n) { |
19 |
| - if (a[j] % gcd == 0) // value of gcd is as needed so far |
20 |
| - j++; // so we check for next element |
21 |
| - else |
22 |
| - gcd = a[j] % gcd; // calculating GCD by division method |
| 19 | +/** |
| 20 | + * @namespace math |
| 21 | + * @brief Maths algorithms |
| 22 | + */ |
| 23 | +namespace math { |
| 24 | +/** |
| 25 | + * @namespace gcd_of_n_numbers |
| 26 | + * @brief Compute GCD of numbers in an array |
| 27 | + */ |
| 28 | +namespace gcd_of_n_numbers { |
| 29 | +/** |
| 30 | + * @brief Function to compute GCD of 2 numbers x and y |
| 31 | + * @param x First number |
| 32 | + * @param y Second number |
| 33 | + * @return GCD of x and y via recursion |
| 34 | + */ |
| 35 | +int gcd_two(int x, int y) { |
| 36 | + // base cases |
| 37 | + if (y == 0) { |
| 38 | + return x; |
| 39 | + } |
| 40 | + if (x == 0) { |
| 41 | + return y; |
| 42 | + } |
| 43 | + return gcd_two(y, x % y); // Euclidean method |
| 44 | +} |
| 45 | + |
| 46 | +/** |
| 47 | + * @brief Function to check if all elements in the array are 0 |
| 48 | + * @param a Array of numbers |
| 49 | + * @return 'True' if all elements are 0 |
| 50 | + * @return 'False' if not all elements are 0 |
| 51 | + */ |
| 52 | +template <std::size_t n> |
| 53 | +bool check_all_zeros(const std::array<int, n> &a) { |
| 54 | + // Use std::all_of to simplify zero-checking |
| 55 | + return std::all_of(a.begin(), a.end(), [](int x) { return x == 0; }); |
| 56 | +} |
| 57 | + |
| 58 | +/** |
| 59 | + * @brief Main program to compute GCD using the Euclidean algorithm |
| 60 | + * @param a Array of integers to compute GCD for |
| 61 | + * @return GCD of the numbers in the array or std::nullopt if undefined |
| 62 | + */ |
| 63 | +template <std::size_t n> |
| 64 | +int gcd(const std::array<int, n> &a) { |
| 65 | + // GCD is undefined if all elements in the array are 0 |
| 66 | + if (check_all_zeros(a)) { |
| 67 | + return -1; // Use std::optional to represent undefined GCD |
| 68 | + } |
| 69 | + |
| 70 | + // divisors can be negative, we only want the positive value |
| 71 | + int result = std::abs(a[0]); |
| 72 | + for (std::size_t i = 1; i < n; ++i) { |
| 73 | + result = gcd_two(result, std::abs(a[i])); |
| 74 | + if (result == 1) { |
| 75 | + break; // Further computations still result in gcd of 1 |
23 | 76 | }
|
24 |
| - return gcd; |
| 77 | + } |
| 78 | + return result; |
25 | 79 | }
|
| 80 | +} // namespace gcd_of_n_numbers |
| 81 | +} // namespace math |
26 | 82 |
|
27 |
| -/** Main function */ |
28 |
| -int main() { |
29 |
| - int n; |
30 |
| - std::cout << "Enter value of n:" << std::endl; |
31 |
| - std::cin >> n; |
32 |
| - int *a = new int[n]; |
33 |
| - int i; |
34 |
| - std::cout << "Enter the n numbers:" << std::endl; |
35 |
| - for (i = 0; i < n; i++) std::cin >> a[i]; |
| 83 | +/** |
| 84 | + * @brief Self-test implementation |
| 85 | + * @return void |
| 86 | + */ |
| 87 | +static void test() { |
| 88 | + std::array<int, 1> array_1 = {0}; |
| 89 | + std::array<int, 1> array_2 = {1}; |
| 90 | + std::array<int, 2> array_3 = {0, 2}; |
| 91 | + std::array<int, 3> array_4 = {-60, 24, 18}; |
| 92 | + std::array<int, 4> array_5 = {100, -100, -100, 200}; |
| 93 | + std::array<int, 5> array_6 = {0, 0, 0, 0, 0}; |
| 94 | + std::array<int, 7> array_7 = {10350, -24150, 0, 17250, 37950, -127650, 51750}; |
| 95 | + std::array<int, 7> array_8 = {9500000, -12121200, 0, 4444, 0, 0, 123456789}; |
36 | 96 |
|
37 |
| - std::cout << "GCD of entered n numbers:" << gcd(a, n) << std::endl; |
| 97 | + assert(math::gcd_of_n_numbers::gcd(array_1) == -1); |
| 98 | + assert(math::gcd_of_n_numbers::gcd(array_2) == 1); |
| 99 | + assert(math::gcd_of_n_numbers::gcd(array_3) == 2); |
| 100 | + assert(math::gcd_of_n_numbers::gcd(array_4) == 6); |
| 101 | + assert(math::gcd_of_n_numbers::gcd(array_5) == 100); |
| 102 | + assert(math::gcd_of_n_numbers::gcd(array_6) == -1); |
| 103 | + assert(math::gcd_of_n_numbers::gcd(array_7) == 3450); |
| 104 | + assert(math::gcd_of_n_numbers::gcd(array_8) == 1); |
| 105 | +} |
38 | 106 |
|
39 |
| - delete[] a; |
40 |
| - return 0; |
| 107 | +/** |
| 108 | + * @brief Main function |
| 109 | + * @return 0 on exit |
| 110 | + */ |
| 111 | +int main() { |
| 112 | + test(); // run self-test implementation |
| 113 | + return 0; |
41 | 114 | }
|
0 commit comments