Skip to content

Commit 37a9811

Browse files
docs, test: fit modular inverse fermat little theorem to contributing guidelines (#2779)
* Update modular_inverse_fermat_little_theorem.cpp * Update modular_inverse_fermat_little_theorem.cpp * Update modular_inverse_fermat_little_theorem.cpp * Update modular_inverse_fermat_little_theorem.cpp * Update math/modular_inverse_fermat_little_theorem.cpp Co-authored-by: realstealthninja <[email protected]> * Update math/modular_inverse_fermat_little_theorem.cpp Co-authored-by: realstealthninja <[email protected]> * Update modular_inverse_fermat_little_theorem.cpp Add time complexity in comment * Update modular_inverse_fermat_little_theorem.cpp * Update modular_inverse_fermat_little_theorem.cpp --------- Co-authored-by: realstealthninja <[email protected]>
1 parent d438f0f commit 37a9811

File tree

1 file changed

+85
-43
lines changed

1 file changed

+85
-43
lines changed

math/modular_inverse_fermat_little_theorem.cpp

Lines changed: 85 additions & 43 deletions
Original file line numberDiff line numberDiff line change
@@ -30,8 +30,8 @@
3030
* a^{m-2} &≡& a^{-1} \;\text{mod}\; m
3131
* \f}
3232
*
33-
* We will find the exponent using binary exponentiation. Such that the
34-
* algorithm works in \f$O(\log m)\f$ time.
33+
* We will find the exponent using binary exponentiation such that the
34+
* algorithm works in \f$O(\log n)\f$ time.
3535
*
3636
* Examples: -
3737
* * a = 3 and m = 7
@@ -43,56 +43,98 @@
4343
* (as \f$a\times a^{-1} = 1\f$)
4444
*/
4545

46-
#include <iostream>
47-
#include <vector>
46+
#include <cassert> /// for assert
47+
#include <cstdint> /// for std::int64_t
48+
#include <iostream> /// for IO implementations
4849

49-
/** Recursive function to calculate exponent in \f$O(\log n)\f$ using binary
50-
* exponent.
50+
/**
51+
* @namespace math
52+
* @brief Maths algorithms.
53+
*/
54+
namespace math {
55+
/**
56+
* @namespace modular_inverse_fermat
57+
* @brief Calculate modular inverse using Fermat's Little Theorem.
58+
*/
59+
namespace modular_inverse_fermat {
60+
/**
61+
* @brief Calculate exponent with modulo using binary exponentiation in \f$O(\log b)\f$ time.
62+
* @param a The base
63+
* @param b The exponent
64+
* @param m The modulo
65+
* @return The result of \f$a^{b} % m\f$
5166
*/
52-
int64_t binExpo(int64_t a, int64_t b, int64_t m) {
53-
a %= m;
54-
int64_t res = 1;
55-
while (b > 0) {
56-
if (b % 2) {
57-
res = res * a % m;
58-
}
59-
a = a * a % m;
60-
// Dividing b by 2 is similar to right shift.
61-
b >>= 1;
67+
std::int64_t binExpo(std::int64_t a, std::int64_t b, std::int64_t m) {
68+
a %= m;
69+
std::int64_t res = 1;
70+
while (b > 0) {
71+
if (b % 2 != 0) {
72+
res = res * a % m;
6273
}
63-
return res;
74+
a = a * a % m;
75+
// Dividing b by 2 is similar to right shift by 1 bit
76+
b >>= 1;
77+
}
78+
return res;
6479
}
65-
66-
/** Prime check in \f$O(\sqrt{m})\f$ time.
80+
/**
81+
* @brief Check if an integer is a prime number in \f$O(\sqrt{m})\f$ time.
82+
* @param m An intger to check for primality
83+
* @return true if the number is prime
84+
* @return false if the number is not prime
6785
*/
68-
bool isPrime(int64_t m) {
69-
if (m <= 1) {
70-
return false;
71-
} else {
72-
for (int64_t i = 2; i * i <= m; i++) {
73-
if (m % i == 0) {
74-
return false;
75-
}
76-
}
86+
bool isPrime(std::int64_t m) {
87+
if (m <= 1) {
88+
return false;
89+
}
90+
for (std::int64_t i = 2; i * i <= m; i++) {
91+
if (m % i == 0) {
92+
return false;
7793
}
78-
return true;
94+
}
95+
return true;
96+
}
97+
/**
98+
* @brief calculates the modular inverse.
99+
* @param a Integer value for the base
100+
* @param m Integer value for modulo
101+
* @return The result that is the modular inverse of a modulo m
102+
*/
103+
std::int64_t modular_inverse(std::int64_t a, std::int64_t m) {
104+
while (a < 0) {
105+
a += m;
106+
}
107+
108+
// Check for invalid cases
109+
if (!isPrime(m) || a == 0) {
110+
return -1; // Invalid input
111+
}
112+
113+
return binExpo(a, m - 2, m); // Fermat's Little Theorem
114+
}
115+
} // namespace modular_inverse_fermat
116+
} // namespace math
117+
118+
/**
119+
* @brief Self-test implementation
120+
* @return void
121+
*/
122+
static void test() {
123+
assert(math::modular_inverse_fermat::modular_inverse(0, 97) == -1);
124+
assert(math::modular_inverse_fermat::modular_inverse(15, -2) == -1);
125+
assert(math::modular_inverse_fermat::modular_inverse(3, 10) == -1);
126+
assert(math::modular_inverse_fermat::modular_inverse(3, 7) == 5);
127+
assert(math::modular_inverse_fermat::modular_inverse(1, 101) == 1);
128+
assert(math::modular_inverse_fermat::modular_inverse(-1337, 285179) == 165519);
129+
assert(math::modular_inverse_fermat::modular_inverse(123456789, 998244353) == 25170271);
130+
assert(math::modular_inverse_fermat::modular_inverse(-9876543210, 1000000007) == 784794281);
79131
}
80132

81133
/**
82-
* Main function
134+
* @brief Main function
135+
* @return 0 on exit
83136
*/
84137
int main() {
85-
int64_t a, m;
86-
// Take input of a and m.
87-
std::cout << "Computing ((a^(-1))%(m)) using Fermat's Little Theorem";
88-
std::cout << std::endl << std::endl;
89-
std::cout << "Give input 'a' and 'm' space separated : ";
90-
std::cin >> a >> m;
91-
if (isPrime(m)) {
92-
std::cout << "The modular inverse of a with mod m is (a^(m-2)) : ";
93-
std::cout << binExpo(a, m - 2, m) << std::endl;
94-
} else {
95-
std::cout << "m must be a prime number.";
96-
std::cout << std::endl;
97-
}
138+
test(); // run self-test implementation
139+
return 0;
98140
}

0 commit comments

Comments
 (0)