{{ header }}
pandas provides methods for manipulating a :class:`Series` and :class:`DataFrame` to alter the representation of the data for further data processing or data summarization.
- :func:`~pandas.pivot` and :func:`~pandas.pivot_table`: Group unique values within one or more discrete categories.
- :meth:`~DataFrame.stack` and :meth:`~DataFrame.unstack`: Pivot a column or row level to the opposite axis respectively.
- :func:`~pandas.melt` and :func:`~pandas.wide_to_long`: Unpivot a wide :class:`DataFrame` to a long format.
- :func:`~pandas.get_dummies` and :func:`~pandas.from_dummies`: Conversions with indicator variables.
- :meth:`~Series.explode`: Convert a column of list-like values to individual rows.
- :func:`~pandas.crosstab`: Calculate a cross-tabulation of multiple 1 dimensional factor arrays.
- :func:`~pandas.cut`: Transform continuous variables to discrete, categorical values
- :func:`~pandas.factorize`: Encode 1 dimensional variables into integer labels.
Data is often stored in so-called "stacked" or "record" format. In a "record" or "wide" format, typically there is one row for each subject. In the "stacked" or "long" format there are multiple rows for each subject where applicable.
.. ipython:: python data = { "value": range(12), "variable": ["A"] * 3 + ["B"] * 3 + ["C"] * 3 + ["D"] * 3, "date": pd.to_datetime(["2020-01-03", "2020-01-04", "2020-01-05"] * 4) } df = pd.DataFrame(data)
To perform time series operations with each unique variable, a better
representation would be where the columns
are the unique variables and an
index
of dates identifies individual observations. To reshape the data into
this form, we use the :meth:`DataFrame.pivot` method (also implemented as a
top level function :func:`~pandas.pivot`):
.. ipython:: python pivoted = df.pivot(index="date", columns="variable", values="value") pivoted
If the values
argument is omitted, and the input :class:`DataFrame` has more than
one column of values which are not used as column or index inputs to :meth:`~DataFrame.pivot`,
then the resulting "pivoted" :class:`DataFrame` will have :ref:`hierarchical columns
<advanced.hierarchical>` whose topmost level indicates the respective value
column:
.. ipython:: python df["value2"] = df["value"] * 2 pivoted = df.pivot(index="date", columns="variable") pivoted
You can then select subsets from the pivoted :class:`DataFrame`:
.. ipython:: python pivoted["value2"]
Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.
Note
:func:`~pandas.pivot` can only handle unique rows specified by index
and columns
.
If you data contains duplicates, use :func:`~pandas.pivot_table`.
While :meth:`~DataFrame.pivot` provides general purpose pivoting with various data types, pandas also provides :func:`~pandas.pivot_table` or :meth:`~DataFrame.pivot_table` for pivoting with aggregation of numeric data.
The function :func:`~pandas.pivot_table` can be used to create spreadsheet-style pivot tables. See the :ref:`cookbook<cookbook.pivot>` for some advanced strategies.
.. ipython:: python import datetime df = pd.DataFrame( { "A": ["one", "one", "two", "three"] * 6, "B": ["A", "B", "C"] * 8, "C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 4, "D": np.random.randn(24), "E": np.random.randn(24), "F": [datetime.datetime(2013, i, 1) for i in range(1, 13)] + [datetime.datetime(2013, i, 15) for i in range(1, 13)], } ) df pd.pivot_table(df, values="D", index=["A", "B"], columns=["C"]) pd.pivot_table( df, values=["D", "E"], index=["B"], columns=["A", "C"], aggfunc="sum", ) pd.pivot_table( df, values="E", index=["B", "C"], columns=["A"], aggfunc=["sum", "mean"], )
The result is a :class:`DataFrame` potentially having a :class:`MultiIndex` on the
index or column. If the values
column name is not given, the pivot table
will include all of the data in an additional level of hierarchy in the columns:
.. ipython:: python pd.pivot_table(df[["A", "B", "C", "D", "E"]], index=["A", "B"], columns=["C"])
Also, you can use :class:`Grouper` for index
and columns
keywords. For detail of :class:`Grouper`, see :ref:`Grouping with a Grouper specification <groupby.specify>`.
.. ipython:: python pd.pivot_table(df, values="D", index=pd.Grouper(freq="ME", key="F"), columns="C")
Passing margins=True
to :meth:`~DataFrame.pivot_table` will add a row and column with an
All
label with partial group aggregates across the categories on the
rows and columns:
.. ipython:: python table = df.pivot_table( index=["A", "B"], columns="C", values=["D", "E"], margins=True, aggfunc="std" ) table
Additionally, you can call :meth:`DataFrame.stack` to display a pivoted DataFrame as having a multi-level index:
.. ipython:: python table.stack()
Closely related to the :meth:`~DataFrame.pivot` method are the related :meth:`~DataFrame.stack` and :meth:`~DataFrame.unstack` methods available on :class:`Series` and :class:`DataFrame`. These methods are designed to work together with :class:`MultiIndex` objects (see the section on :ref:`hierarchical indexing <advanced.hierarchical>`).
- :meth:`~DataFrame.stack`: "pivot" a level of the (possibly hierarchical) column labels, returning a :class:`DataFrame` with an index with a new inner-most level of row labels.
- :meth:`~DataFrame.unstack`: (inverse operation of :meth:`~DataFrame.stack`) "pivot" a level of the (possibly hierarchical) row index to the column axis, producing a reshaped :class:`DataFrame` with a new inner-most level of column labels.
.. ipython:: python tuples = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] index = pd.MultiIndex.from_arrays(tuples, names=["first", "second"]) df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=["A", "B"]) df2 = df[:4] df2
The :meth:`~DataFrame.stack` function "compresses" a level in the :class:`DataFrame` columns to produce either:
- A :class:`Series`, in the case of a :class:`Index` in the columns.
- A :class:`DataFrame`, in the case of a :class:`MultiIndex` in the columns.
If the columns have a :class:`MultiIndex`, you can choose which level to stack. The stacked level becomes the new lowest level in a :class:`MultiIndex` on the columns:
.. ipython:: python stacked = df2.stack() stacked
With a "stacked" :class:`DataFrame` or :class:`Series` (having a :class:`MultiIndex` as the
index
), the inverse operation of :meth:`~DataFrame.stack` is :meth:`~DataFrame.unstack`, which by default
unstacks the last level:
.. ipython:: python stacked.unstack() stacked.unstack(1) stacked.unstack(0)
If the indexes have names, you can use the level names instead of specifying the level numbers:
.. ipython:: python stacked.unstack("second")
Notice that the :meth:`~DataFrame.stack` and :meth:`~DataFrame.unstack` methods implicitly sort the index levels involved. Hence a call to :meth:`~DataFrame.stack` and then :meth:`~DataFrame.unstack`, or vice versa, will result in a sorted copy of the original :class:`DataFrame` or :class:`Series`:
.. ipython:: python index = pd.MultiIndex.from_product([[2, 1], ["a", "b"]]) df = pd.DataFrame(np.random.randn(4), index=index, columns=["A"]) df all(df.unstack().stack() == df.sort_index())
You may also stack or unstack more than one level at a time by passing a list of levels, in which case the end result is as if each level in the list were processed individually.
.. ipython:: python columns = pd.MultiIndex.from_tuples( [ ("A", "cat", "long"), ("B", "cat", "long"), ("A", "dog", "short"), ("B", "dog", "short"), ], names=["exp", "animal", "hair_length"], ) df = pd.DataFrame(np.random.randn(4, 4), columns=columns) df df.stack(level=["animal", "hair_length"])
The list of levels can contain either level names or level numbers but not a mixture of the two.
.. ipython:: python # df.stack(level=['animal', 'hair_length']) # from above is equivalent to: df.stack(level=[1, 2])
Unstacking can result in missing values if subgroups do not have the same set of labels. By default, missing values will be replaced with the default fill value for that data type.
.. ipython:: python columns = pd.MultiIndex.from_tuples( [ ("A", "cat"), ("B", "dog"), ("B", "cat"), ("A", "dog"), ], names=["exp", "animal"], ) index = pd.MultiIndex.from_product( [("bar", "baz", "foo", "qux"), ("one", "two")], names=["first", "second"] ) df = pd.DataFrame(np.random.randn(8, 4), index=index, columns=columns) df3 = df.iloc[[0, 1, 4, 7], [1, 2]] df3 df3.unstack()
The missing value can be filled with a specific value with the fill_value
argument.
.. ipython:: python df3.unstack(fill_value=-1e9)
The top-level :func:`~pandas.melt` function and the corresponding :meth:`DataFrame.melt`
are useful to reshape a :class:`DataFrame` into a format where one or more columns
are identifier variables, while all other columns, considered measured
variables, are "unpivoted" to the row axis, leaving just two non-identifier
columns, "variable" and "value". The names of those columns can be customized
by supplying the var_name
and value_name
parameters.
.. ipython:: python cheese = pd.DataFrame( { "first": ["John", "Mary"], "last": ["Doe", "Bo"], "height": [5.5, 6.0], "weight": [130, 150], } ) cheese cheese.melt(id_vars=["first", "last"]) cheese.melt(id_vars=["first", "last"], var_name="quantity")
When transforming a DataFrame using :func:`~pandas.melt`, the index will be ignored.
The original index values can be kept by setting the ignore_index=False
parameter to False
(default is True
).
ignore_index=False
will however duplicate index values.
.. ipython:: python index = pd.MultiIndex.from_tuples([("person", "A"), ("person", "B")]) cheese = pd.DataFrame( { "first": ["John", "Mary"], "last": ["Doe", "Bo"], "height": [5.5, 6.0], "weight": [130, 150], }, index=index, ) cheese cheese.melt(id_vars=["first", "last"]) cheese.melt(id_vars=["first", "last"], ignore_index=False)
:func:`~pandas.wide_to_long` is similar to :func:`~pandas.melt` with more customization for column matching.
.. ipython:: python dft = pd.DataFrame( { "A1970": {0: "a", 1: "b", 2: "c"}, "A1980": {0: "d", 1: "e", 2: "f"}, "B1970": {0: 2.5, 1: 1.2, 2: 0.7}, "B1980": {0: 3.2, 1: 1.3, 2: 0.1}, "X": dict(zip(range(3), np.random.randn(3))), } ) dft["id"] = dft.index dft pd.wide_to_long(dft, ["A", "B"], i="id", j="year")
To convert categorical variables of a :class:`Series` into a "dummy" or "indicator", :func:`~pandas.get_dummies` creates a new :class:`DataFrame` with columns of the unique variables and the values representing the presence of those variables per row.
.. ipython:: python df = pd.DataFrame({"key": list("bbacab"), "data1": range(6)}) pd.get_dummies(df["key"]) df["key"].str.get_dummies()
prefix
adds a prefix to the the column names which is useful for merging the result
with the original :class:`DataFrame`:
.. ipython:: python dummies = pd.get_dummies(df["key"], prefix="key") dummies df[["data1"]].join(dummies)
This function is often used along with discretization functions like :func:`~pandas.cut`:
.. ipython:: python values = np.random.randn(10) values bins = [0, 0.2, 0.4, 0.6, 0.8, 1] pd.get_dummies(pd.cut(values, bins))
:func:`get_dummies` also accepts a :class:`DataFrame`. By default, object
, string
,
or categorical
type columns are encoded as dummy variables with other columns unaltered.
.. ipython:: python df = pd.DataFrame({"A": ["a", "b", "a"], "B": ["c", "c", "b"], "C": [1, 2, 3]}) pd.get_dummies(df)
Specifying the columns
keyword will encode a column of any type.
.. ipython:: python pd.get_dummies(df, columns=["A"])
As with the :class:`Series` version, you can pass values for the prefix
and
prefix_sep
. By default the column name is used as the prefix and _
as
the prefix separator. You can specify prefix
and prefix_sep
in 3 ways:
- string: Use the same value for
prefix
orprefix_sep
for each column to be encoded. - list: Must be the same length as the number of columns being encoded.
- dict: Mapping column name to prefix.
.. ipython:: python simple = pd.get_dummies(df, prefix="new_prefix") simple from_list = pd.get_dummies(df, prefix=["from_A", "from_B"]) from_list from_dict = pd.get_dummies(df, prefix={"B": "from_B", "A": "from_A"}) from_dict
To avoid collinearity when feeding the result to statistical models,
specify drop_first=True
.
.. ipython:: python s = pd.Series(list("abcaa")) pd.get_dummies(s) pd.get_dummies(s, drop_first=True)
When a column contains only one level, it will be omitted in the result.
.. ipython:: python df = pd.DataFrame({"A": list("aaaaa"), "B": list("ababc")}) pd.get_dummies(df) pd.get_dummies(df, drop_first=True)
The values can be cast to a different type using the dtype
argument.
.. ipython:: python df = pd.DataFrame({"A": list("abc"), "B": [1.1, 2.2, 3.3]}) pd.get_dummies(df, dtype=np.float32).dtypes
.. versionadded:: 1.5.0
:func:`~pandas.from_dummies` converts the output of :func:`~pandas.get_dummies` back into a :class:`Series` of categorical values from indicator values.
.. ipython:: python df = pd.DataFrame({"prefix_a": [0, 1, 0], "prefix_b": [1, 0, 1]}) df pd.from_dummies(df, sep="_")
Dummy coded data only requires k - 1
categories to be included, in this case
the last category is the default category. The default category can be modified with
default_category
.
.. ipython:: python df = pd.DataFrame({"prefix_a": [0, 1, 0]}) df pd.from_dummies(df, sep="_", default_category="b")
For a :class:`DataFrame` column with nested, list-like values, :meth:`~Series.explode` will transform each list-like value to a separate row. The resulting :class:`Index` will be duplicated corresponding to the index label from the original row:
.. ipython:: python keys = ["panda1", "panda2", "panda3"] values = [["eats", "shoots"], ["shoots", "leaves"], ["eats", "leaves"]] df = pd.DataFrame({"keys": keys, "values": values}) df df["values"].explode()
:class:`DataFrame.explode` can also explode the column in the :class:`DataFrame`.
.. ipython:: python df.explode("values")
:meth:`Series.explode` will replace empty lists with a missing value indicator and preserve scalar entries.
.. ipython:: python s = pd.Series([[1, 2, 3], "foo", [], ["a", "b"]]) s s.explode()
A comma-separated string value can be split into individual values in a list and then exploded to a new row.
.. ipython:: python df = pd.DataFrame([{"var1": "a,b,c", "var2": 1}, {"var1": "d,e,f", "var2": 2}]) df.assign(var1=df.var1.str.split(",")).explode("var1")
Use :func:`~pandas.crosstab` to compute a cross-tabulation of two (or more) factors. By default :func:`~pandas.crosstab` computes a frequency table of the factors unless an array of values and an aggregation function are passed.
Any :class:`Series` passed will have their name attributes used unless row or column names for the cross-tabulation are specified
.. ipython:: python a = np.array(["foo", "foo", "bar", "bar", "foo", "foo"], dtype=object) b = np.array(["one", "one", "two", "one", "two", "one"], dtype=object) c = np.array(["dull", "dull", "shiny", "dull", "dull", "shiny"], dtype=object) pd.crosstab(a, [b, c], rownames=["a"], colnames=["b", "c"])
If :func:`~pandas.crosstab` receives only two :class:`Series`, it will provide a frequency table.
.. ipython:: python df = pd.DataFrame( {"A": [1, 2, 2, 2, 2], "B": [3, 3, 4, 4, 4], "C": [1, 1, np.nan, 1, 1]} ) df pd.crosstab(df["A"], df["B"])
:func:`~pandas.crosstab` can also summarize to :class:`Categorical` data.
.. ipython:: python foo = pd.Categorical(["a", "b"], categories=["a", "b", "c"]) bar = pd.Categorical(["d", "e"], categories=["d", "e", "f"]) pd.crosstab(foo, bar)
For :class:`Categorical` data, to include all of data categories even if the actual data does
not contain any instances of a particular category, use dropna=False
.
.. ipython:: python pd.crosstab(foo, bar, dropna=False)
Frequency tables can also be normalized to show percentages rather than counts
using the normalize
argument:
.. ipython:: python pd.crosstab(df["A"], df["B"], normalize=True)
normalize
can also normalize values within each row or within each column:
.. ipython:: python pd.crosstab(df["A"], df["B"], normalize="columns")
:func:`~pandas.crosstab` can also accept a third :class:`Series` and an aggregation function
(aggfunc
) that will be applied to the values of the third :class:`Series` within
each group defined by the first two :class:`Series`:
.. ipython:: python pd.crosstab(df["A"], df["B"], values=df["C"], aggfunc="sum")
margins=True
will add a row and column with an All
label with partial group aggregates
across the categories on the rows and columns:
.. ipython:: python pd.crosstab( df["A"], df["B"], values=df["C"], aggfunc="sum", normalize=True, margins=True )
The :func:`~pandas.cut` function computes groupings for the values of the input array and is often used to transform continuous variables to discrete or categorical variables:
An integer bins
will form equal-width bins.
.. ipython:: python ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60]) pd.cut(ages, bins=3)
A list of ordered bin edges will assign an interval for each variable.
.. ipython:: python pd.cut(ages, bins=[0, 18, 35, 70])
If the bins
keyword is an :class:`IntervalIndex`, then these will be
used to bin the passed data.
.. ipython:: python pd.cut(ages, bins=pd.IntervalIndex.from_breaks([0, 40, 70]))
:func:`~pandas.factorize` encodes 1 dimensional values into integer labels. Missing values
are encoded as -1
.
.. ipython:: python x = pd.Series(["A", "A", np.nan, "B", 3.14, np.inf]) x labels, uniques = pd.factorize(x) labels uniques
:class:`Categorical` will similarly encode 1 dimensional values for further categorical operations
.. ipython:: python pd.Categorical(x)