Skip to content

Latest commit

 

History

History
52 lines (33 loc) · 2.02 KB

Fractional Knapsack.md

File metadata and controls

52 lines (33 loc) · 2.02 KB

Knapsack Problem (Greedy algorithm)

Problem Statement

Given a set of items, each with weight and a value, determine the number of each item included in a collection so that the total weight is less than or equal to the given limit and the total value is as large as possible.

Greedy method will always provide an optimal solution with fractional knapsack problem.

Time Complexity

O(log n) Worst Case
O(1) Best Case (If middle element of initial array is the target element)

Space Complexity

O(1) For iterative approach
O(1) For recursive approach if tail call optimization is used, O(log n) due to recursion call stack, otherwise

Example

Lets assume the capacity of knapsack, W = 60
value = [280, 100, 120, 120]  
weight = [40, 10, 20, 24]

Ratio(V/W) = 7,10,6,5
Say those items as A,B,C,D
next, the items should be sorted in descending order based on the ratio of value by weight to get maximum profit
First and foremost, B was picked since its weight is smaller than the knapsack's capacity. The next item, A, is chosen since the knapsack's available capacity is more than A's weight. C is now the next item on the list. However, the entire item cannot be chosen because the knapsack's remaining capacity is less than C's weight.
As a result, the C proportion (60–50)/20)
The knapsack's capacity is now equal to the specified items.
As a result, no more items can be chosen.

10 + 40 + 20*(10/20) = 60 is the total weight of the chosen goods.

100+280+120*(10/20)=380+60=440 is the total profit.

This is the most suitable option.

We won't be able to make more money by combining diverse things.

Code Implementation Links

Video Explanation

A CS50 video explaining the Greedy Algorithm