forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_hashing.py
281 lines (234 loc) · 11.5 KB
/
test_hashing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import datetime
import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, Index, MultiIndex, Series
from pandas.core.util.hashing import _hash_scalar, hash_tuple, hash_tuples
from pandas.util import hash_array, hash_pandas_object
import pandas.util.testing as tm
class TestHashing(object):
@pytest.fixture(params=[
Series([1, 2, 3] * 3, dtype='int32'),
Series([None, 2.5, 3.5] * 3, dtype='float32'),
Series(['a', 'b', 'c'] * 3, dtype='category'),
Series(['d', 'e', 'f'] * 3),
Series([True, False, True] * 3),
Series(pd.date_range('20130101', periods=9)),
Series(pd.date_range('20130101', periods=9, tz='US/Eastern')),
Series(pd.timedelta_range('2000ns', periods=9))])
def series(self, request):
return request.param
def test_consistency(self):
# check that our hash doesn't change because of a mistake
# in the actual code; this is the ground truth
result = hash_pandas_object(Index(['foo', 'bar', 'baz']))
expected = Series(np.array([3600424527151052760, 1374399572096150070,
477881037637427054], dtype='uint64'),
index=['foo', 'bar', 'baz'])
tm.assert_series_equal(result, expected)
def test_hash_array(self, series):
a = series.values
tm.assert_numpy_array_equal(hash_array(a), hash_array(a))
def test_hash_array_mixed(self):
result1 = hash_array(np.array([3, 4, 'All']))
result2 = hash_array(np.array(['3', '4', 'All']))
result3 = hash_array(np.array([3, 4, 'All'], dtype=object))
tm.assert_numpy_array_equal(result1, result2)
tm.assert_numpy_array_equal(result1, result3)
@pytest.mark.parametrize('val', [5, 'foo', pd.Timestamp('20130101')])
def test_hash_array_errors(self, val):
msg = 'must pass a ndarray-like'
with pytest.raises(TypeError, match=msg):
hash_array(val)
def check_equal(self, obj, **kwargs):
a = hash_pandas_object(obj, **kwargs)
b = hash_pandas_object(obj, **kwargs)
tm.assert_series_equal(a, b)
kwargs.pop('index', None)
a = hash_pandas_object(obj, **kwargs)
b = hash_pandas_object(obj, **kwargs)
tm.assert_series_equal(a, b)
def check_not_equal_with_index(self, obj):
# check that we are not hashing the same if
# we include the index
if not isinstance(obj, Index):
a = hash_pandas_object(obj, index=True)
b = hash_pandas_object(obj, index=False)
if len(obj):
assert not (a == b).all()
def test_hash_tuples(self):
tups = [(1, 'one'), (1, 'two'), (2, 'one')]
result = hash_tuples(tups)
expected = hash_pandas_object(MultiIndex.from_tuples(tups)).values
tm.assert_numpy_array_equal(result, expected)
result = hash_tuples(tups[0])
assert result == expected[0]
@pytest.mark.parametrize('tup', [
(1, 'one'), (1, np.nan), (1.0, pd.NaT, 'A'),
('A', pd.Timestamp("2012-01-01"))])
def test_hash_tuple(self, tup):
# test equivalence between hash_tuples and hash_tuple
result = hash_tuple(tup)
expected = hash_tuples([tup])[0]
assert result == expected
@pytest.mark.parametrize('val', [
1, 1.4, 'A', b'A', u'A', pd.Timestamp("2012-01-01"),
pd.Timestamp("2012-01-01", tz='Europe/Brussels'),
datetime.datetime(2012, 1, 1),
pd.Timestamp("2012-01-01", tz='EST').to_pydatetime(),
pd.Timedelta('1 days'), datetime.timedelta(1),
pd.Period('2012-01-01', freq='D'), pd.Interval(0, 1),
np.nan, pd.NaT, None])
def test_hash_scalar(self, val):
result = _hash_scalar(val)
expected = hash_array(np.array([val], dtype=object), categorize=True)
assert result[0] == expected[0]
@pytest.mark.parametrize('val', [5, 'foo', pd.Timestamp('20130101')])
def test_hash_tuples_err(self, val):
msg = 'must be convertible to a list-of-tuples'
with pytest.raises(TypeError, match=msg):
hash_tuples(val)
def test_multiindex_unique(self):
mi = MultiIndex.from_tuples([(118, 472), (236, 118),
(51, 204), (102, 51)])
assert mi.is_unique is True
result = hash_pandas_object(mi)
assert result.is_unique is True
def test_multiindex_objects(self):
mi = MultiIndex(levels=[['b', 'd', 'a'], [1, 2, 3]],
labels=[[0, 1, 0, 2], [2, 0, 0, 1]],
names=['col1', 'col2'])
recons = mi._sort_levels_monotonic()
# these are equal
assert mi.equals(recons)
assert Index(mi.values).equals(Index(recons.values))
# _hashed_values and hash_pandas_object(..., index=False)
# equivalency
expected = hash_pandas_object(
mi, index=False).values
result = mi._hashed_values
tm.assert_numpy_array_equal(result, expected)
expected = hash_pandas_object(
recons, index=False).values
result = recons._hashed_values
tm.assert_numpy_array_equal(result, expected)
expected = mi._hashed_values
result = recons._hashed_values
# values should match, but in different order
tm.assert_numpy_array_equal(np.sort(result),
np.sort(expected))
@pytest.mark.parametrize('obj', [
Series([1, 2, 3]),
Series([1.0, 1.5, 3.2]),
Series([1.0, 1.5, np.nan]),
Series([1.0, 1.5, 3.2], index=[1.5, 1.1, 3.3]),
Series(['a', 'b', 'c']),
Series(['a', np.nan, 'c']),
Series(['a', None, 'c']),
Series([True, False, True]),
Series(),
Index([1, 2, 3]),
Index([True, False, True]),
DataFrame({'x': ['a', 'b', 'c'], 'y': [1, 2, 3]}),
DataFrame(),
tm.makeMissingDataframe(),
tm.makeMixedDataFrame(),
tm.makeTimeDataFrame(),
tm.makeTimeSeries(),
tm.makeTimedeltaIndex(),
tm.makePeriodIndex(),
Series(tm.makePeriodIndex()),
Series(pd.date_range('20130101', periods=3, tz='US/Eastern')),
MultiIndex.from_product([range(5), ['foo', 'bar', 'baz'],
pd.date_range('20130101', periods=2)]),
MultiIndex.from_product([pd.CategoricalIndex(list('aabc')), range(3)])
])
def test_hash_pandas_object(self, obj):
self.check_equal(obj)
self.check_not_equal_with_index(obj)
def test_hash_pandas_object2(self, series):
self.check_equal(series)
self.check_not_equal_with_index(series)
@pytest.mark.parametrize('obj', [
Series([], dtype='float64'), Series([], dtype='object'), Index([])])
def test_hash_pandas_empty_object(self, obj):
# these are by-definition the same with
# or w/o the index as the data is empty
self.check_equal(obj)
@pytest.mark.parametrize('s1', [
Series(['a', 'b', 'c', 'd']),
Series([1000, 2000, 3000, 4000]),
Series(pd.date_range(0, periods=4))])
@pytest.mark.parametrize('categorize', [True, False])
def test_categorical_consistency(self, s1, categorize):
# GH15143
# Check that categoricals hash consistent with their values, not codes
# This should work for categoricals of any dtype
s2 = s1.astype('category').cat.set_categories(s1)
s3 = s2.cat.set_categories(list(reversed(s1)))
# These should all hash identically
h1 = hash_pandas_object(s1, categorize=categorize)
h2 = hash_pandas_object(s2, categorize=categorize)
h3 = hash_pandas_object(s3, categorize=categorize)
tm.assert_series_equal(h1, h2)
tm.assert_series_equal(h1, h3)
def test_categorical_with_nan_consistency(self):
c = pd.Categorical.from_codes(
[-1, 0, 1, 2, 3, 4],
categories=pd.date_range('2012-01-01', periods=5, name='B'))
expected = hash_array(c, categorize=False)
c = pd.Categorical.from_codes(
[-1, 0],
categories=[pd.Timestamp('2012-01-01')])
result = hash_array(c, categorize=False)
assert result[0] in expected
assert result[1] in expected
@pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning")
def test_pandas_errors(self):
with pytest.raises(TypeError):
hash_pandas_object(pd.Timestamp('20130101'))
obj = tm.makePanel()
with pytest.raises(TypeError):
hash_pandas_object(obj)
def test_hash_keys(self):
# using different hash keys, should have different hashes
# for the same data
# this only matters for object dtypes
obj = Series(list('abc'))
a = hash_pandas_object(obj, hash_key='9876543210123456')
b = hash_pandas_object(obj, hash_key='9876543210123465')
assert (a != b).all()
def test_invalid_key(self):
# this only matters for object dtypes
msg = 'key should be a 16-byte string encoded'
with pytest.raises(ValueError, match=msg):
hash_pandas_object(Series(list('abc')), hash_key='foo')
def test_alread_encoded(self):
# if already encoded then ok
obj = Series(list('abc')).str.encode('utf8')
self.check_equal(obj)
def test_alternate_encoding(self):
obj = Series(list('abc'))
self.check_equal(obj, encoding='ascii')
@pytest.mark.parametrize('l_exp', range(8))
@pytest.mark.parametrize('l_add', [0, 1])
def test_same_len_hash_collisions(self, l_exp, l_add):
length = 2**(l_exp + 8) + l_add
s = tm.rands_array(length, 2)
result = hash_array(s, 'utf8')
assert not result[0] == result[1]
def test_hash_collisions(self):
# hash collisions are bad
# https://github.com/pandas-dev/pandas/issues/14711#issuecomment-264885726
L = ['Ingrid-9Z9fKIZmkO7i7Cn51Li34pJm44fgX6DYGBNj3VPlOH50m7HnBlPxfIwFMrcNJNMP6PSgLmwWnInciMWrCSAlLEvt7JkJl4IxiMrVbXSa8ZQoVaq5xoQPjltuJEfwdNlO6jo8qRRHvD8sBEBMQASrRa6TsdaPTPCBo3nwIBpE7YzzmyH0vMBhjQZLx1aCT7faSEx7PgFxQhHdKFWROcysamgy9iVj8DO2Fmwg1NNl93rIAqC3mdqfrCxrzfvIY8aJdzin2cHVzy3QUJxZgHvtUtOLxoqnUHsYbNTeq0xcLXpTZEZCxD4PGubIuCNf32c33M7HFsnjWSEjE2yVdWKhmSVodyF8hFYVmhYnMCztQnJrt3O8ZvVRXd5IKwlLexiSp4h888w7SzAIcKgc3g5XQJf6MlSMftDXm9lIsE1mJNiJEv6uY6pgvC3fUPhatlR5JPpVAHNSbSEE73MBzJrhCAbOLXQumyOXigZuPoME7QgJcBalliQol7YZ9', # noqa
'Tim-b9MddTxOWW2AT1Py6vtVbZwGAmYCjbp89p8mxsiFoVX4FyDOF3wFiAkyQTUgwg9sVqVYOZo09Dh1AzhFHbgij52ylF0SEwgzjzHH8TGY8Lypart4p4onnDoDvVMBa0kdthVGKl6K0BDVGzyOXPXKpmnMF1H6rJzqHJ0HywfwS4XYpVwlAkoeNsiicHkJUFdUAhG229INzvIAiJuAHeJDUoyO4DCBqtoZ5TDend6TK7Y914yHlfH3g1WZu5LksKv68VQHJriWFYusW5e6ZZ6dKaMjTwEGuRgdT66iU5nqWTHRH8WSzpXoCFwGcTOwyuqPSe0fTe21DVtJn1FKj9F9nEnR9xOvJUO7E0piCIF4Ad9yAIDY4DBimpsTfKXCu1vdHpKYerzbndfuFe5AhfMduLYZJi5iAw8qKSwR5h86ttXV0Mc0QmXz8dsRvDgxjXSmupPxBggdlqUlC828hXiTPD7am0yETBV0F3bEtvPiNJfremszcV8NcqAoARMe'] # noqa
# these should be different!
result1 = hash_array(np.asarray(L[0:1], dtype=object), 'utf8')
expected1 = np.array([14963968704024874985], dtype=np.uint64)
tm.assert_numpy_array_equal(result1, expected1)
result2 = hash_array(np.asarray(L[1:2], dtype=object), 'utf8')
expected2 = np.array([16428432627716348016], dtype=np.uint64)
tm.assert_numpy_array_equal(result2, expected2)
result = hash_array(np.asarray(L, dtype=object), 'utf8')
tm.assert_numpy_array_equal(
result, np.concatenate([expected1, expected2], axis=0))