forked from espressif/arduino-esp32
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHardwareSerial.cpp
467 lines (419 loc) · 12.3 KB
/
HardwareSerial.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "pins_arduino.h"
#include "HardwareSerial.h"
#include "soc/soc_caps.h"
#include "driver/uart.h"
#include "freertos/queue.h"
#ifndef SOC_RX0
#if CONFIG_IDF_TARGET_ESP32
#define SOC_RX0 3
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#define SOC_RX0 44
#elif CONFIG_IDF_TARGET_ESP32C3
#define SOC_RX0 20
#endif
#endif
#ifndef SOC_TX0
#if CONFIG_IDF_TARGET_ESP32
#define SOC_TX0 1
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#define SOC_TX0 43
#elif CONFIG_IDF_TARGET_ESP32C3
#define SOC_TX0 21
#endif
#endif
void serialEvent(void) __attribute__((weak));
void serialEvent(void) {}
#if SOC_UART_NUM > 1
#ifndef RX1
#if CONFIG_IDF_TARGET_ESP32
#define RX1 9
#elif CONFIG_IDF_TARGET_ESP32S2
#define RX1 18
#elif CONFIG_IDF_TARGET_ESP32C3
#define RX1 18
#elif CONFIG_IDF_TARGET_ESP32S3
#define RX1 15
#endif
#endif
#ifndef TX1
#if CONFIG_IDF_TARGET_ESP32
#define TX1 10
#elif CONFIG_IDF_TARGET_ESP32S2
#define TX1 17
#elif CONFIG_IDF_TARGET_ESP32C3
#define TX1 19
#elif CONFIG_IDF_TARGET_ESP32S3
#define TX1 16
#endif
#endif
void serialEvent1(void) __attribute__((weak));
void serialEvent1(void) {}
#endif /* SOC_UART_NUM > 1 */
#if SOC_UART_NUM > 2
#ifndef RX2
#if CONFIG_IDF_TARGET_ESP32
#define RX2 16
#elif CONFIG_IDF_TARGET_ESP32S3
#define RX2 19
#endif
#endif
#ifndef TX2
#if CONFIG_IDF_TARGET_ESP32
#define TX2 17
#elif CONFIG_IDF_TARGET_ESP32S3
#define TX2 20
#endif
#endif
void serialEvent2(void) __attribute__((weak));
void serialEvent2(void) {}
#endif /* SOC_UART_NUM > 2 */
#if !defined(NO_GLOBAL_INSTANCES) && !defined(NO_GLOBAL_SERIAL)
#if ARDUINO_USB_CDC_ON_BOOT //Serial used for USB CDC
HardwareSerial Serial0(0);
#elif ARDUINO_HW_CDC_ON_BOOT
HardwareSerial Serial0(0);
#else
HardwareSerial Serial(0);
#endif
#if SOC_UART_NUM > 1
HardwareSerial Serial1(1);
#endif
#if SOC_UART_NUM > 2
HardwareSerial Serial2(2);
#endif
void serialEventRun(void)
{
#if ARDUINO_USB_CDC_ON_BOOT //Serial used for USB CDC
if(Serial0.available()) serialEvent();
#elif ARDUINO_HW_CDC_ON_BOOT
if(Serial0.available()) serialEvent();
#else
if(Serial.available()) serialEvent();
#endif
#if SOC_UART_NUM > 1
if(Serial1.available()) serialEvent1();
#endif
#if SOC_UART_NUM > 2
if(Serial2.available()) serialEvent2();
#endif
}
#endif
#if !CONFIG_DISABLE_HAL_LOCKS
#define HSERIAL_MUTEX_LOCK() do {} while (xSemaphoreTake(_lock, portMAX_DELAY) != pdPASS)
#define HSERIAL_MUTEX_UNLOCK() xSemaphoreGive(_lock)
#else
#define HSERIAL_MUTEX_LOCK()
#define HSERIAL_MUTEX_UNLOCK()
#endif
HardwareSerial::HardwareSerial(int uart_nr) :
_uart_nr(uart_nr),
_uart(NULL),
_rxBufferSize(256),
_onReceiveCB(NULL),
_onReceiveErrorCB(NULL),
_eventTask(NULL)
#if !CONFIG_DISABLE_HAL_LOCKS
,_lock(NULL)
#endif
{
#if !CONFIG_DISABLE_HAL_LOCKS
if(_lock == NULL){
_lock = xSemaphoreCreateMutex();
if(_lock == NULL){
log_e("xSemaphoreCreateMutex failed");
return;
}
}
#endif
}
HardwareSerial::~HardwareSerial()
{
end();
#if !CONFIG_DISABLE_HAL_LOCKS
if(_lock != NULL){
vSemaphoreDelete(_lock);
}
#endif
}
void HardwareSerial::_createEventTask(void *args)
{
// Creating UART event Task
xTaskCreate(_uartEventTask, "uart_event_task", 2048, this, configMAX_PRIORITIES - 1, &_eventTask);
if (_eventTask == NULL) {
log_e(" -- UART%d Event Task not Created!", _uart_nr);
}
}
void HardwareSerial::_destroyEventTask(void)
{
if (_eventTask != NULL) {
vTaskDelete(_eventTask);
_eventTask = NULL;
}
}
void HardwareSerial::onReceiveError(OnReceiveErrorCb function)
{
HSERIAL_MUTEX_LOCK();
// function may be NULL to cancel onReceive() from its respective task
_onReceiveErrorCB = function;
// this can be called after Serial.begin(), therefore it shall create the event task
if (function != NULL && _uart != NULL && _eventTask == NULL) {
_createEventTask(this);
}
HSERIAL_MUTEX_UNLOCK();
}
void HardwareSerial::onReceive(OnReceiveCb function)
{
HSERIAL_MUTEX_LOCK();
// function may be NULL to cancel onReceive() from its respective task
_onReceiveCB = function;
// this can be called after Serial.begin(), therefore it shall create the event task
if (function != NULL && _uart != NULL && _eventTask == NULL) {
_createEventTask(this);
}
HSERIAL_MUTEX_UNLOCK();
}
void HardwareSerial::_uartEventTask(void *args)
{
HardwareSerial *uart = (HardwareSerial *)args;
uart_event_t event;
QueueHandle_t uartEventQueue = NULL;
uartGetEventQueue(uart->_uart, &uartEventQueue);
if (uartEventQueue != NULL) {
for(;;) {
//Waiting for UART event.
if(xQueueReceive(uartEventQueue, (void * )&event, (portTickType)portMAX_DELAY)) {
switch(event.type) {
case UART_DATA:
if(uart->_onReceiveCB && uart->available() > 0) uart->_onReceiveCB();
break;
case UART_FIFO_OVF:
log_w("UART%d FIFO Overflow. Consider adding Hardware Flow Control to your Application.", uart->_uart_nr);
if(uart->_onReceiveErrorCB) uart->_onReceiveErrorCB(UART_FIFO_OVF_ERROR);
break;
case UART_BUFFER_FULL:
log_w("UART%d Buffer Full. Consider encreasing your buffer size of your Application.", uart->_uart_nr);
if(uart->_onReceiveErrorCB) uart->_onReceiveErrorCB(UART_BUFFER_FULL_ERROR);
break;
case UART_BREAK:
log_w("UART%d RX break.", uart->_uart_nr);
if(uart->_onReceiveErrorCB) uart->_onReceiveErrorCB(UART_BREAK_ERROR);
break;
case UART_PARITY_ERR:
log_w("UART%d parity error.", uart->_uart_nr);
if(uart->_onReceiveErrorCB) uart->_onReceiveErrorCB(UART_PARITY_ERROR);
break;
case UART_FRAME_ERR:
log_w("UART%d frame error.", uart->_uart_nr);
if(uart->_onReceiveErrorCB) uart->_onReceiveErrorCB(UART_FRAME_ERROR);
break;
default:
log_w("UART%d unknown event type %d.", uart->_uart_nr, event.type);
break;
}
}
}
}
vTaskDelete(NULL);
}
void HardwareSerial::begin(unsigned long baud, uint32_t config, int8_t rxPin, int8_t txPin, bool invert, unsigned long timeout_ms, uint8_t rxfifo_full_thrhd)
{
if(0 > _uart_nr || _uart_nr >= SOC_UART_NUM) {
log_e("Serial number is invalid, please use numers from 0 to %u", SOC_UART_NUM - 1);
return;
}
#if !CONFIG_DISABLE_HAL_LOCKS
if(_lock == NULL){
log_e("MUTEX Lock failed. Can't begin.");
return;
}
#endif
HSERIAL_MUTEX_LOCK();
// First Time or after end() --> set default Pins
if (!uartIsDriverInstalled(_uart)) {
switch (_uart_nr) {
case UART_NUM_0:
if (rxPin < 0 && txPin < 0) {
rxPin = SOC_RX0;
txPin = SOC_TX0;
}
break;
#if SOC_UART_NUM > 1 // may save some flash bytes...
case UART_NUM_1:
if (rxPin < 0 && txPin < 0) {
rxPin = RX1;
txPin = TX1;
}
break;
#endif
#if SOC_UART_NUM > 2 // may save some flash bytes...
case UART_NUM_2:
if (rxPin < 0 && txPin < 0) {
rxPin = RX2;
txPin = TX2;
}
break;
#endif
default:
log_e("Bad UART Number");
return;
}
}
if(_uart) {
// in this case it is a begin() over a previous begin() - maybe to change baud rate
// thus do not disable debug output
end(false);
}
// IDF UART driver keeps Pin setting on restarting. Negative Pin number will keep it unmodified.
_uart = uartBegin(_uart_nr, baud ? baud : 9600, config, rxPin, txPin, _rxBufferSize, invert, rxfifo_full_thrhd);
if (!baud) {
// using baud rate as zero, forces it to try to detect the current baud rate in place
uartStartDetectBaudrate(_uart);
time_t startMillis = millis();
unsigned long detectedBaudRate = 0;
while(millis() - startMillis < timeout_ms && !(detectedBaudRate = uartDetectBaudrate(_uart))) {
yield();
}
end(false);
if(detectedBaudRate) {
delay(100); // Give some time...
_uart = uartBegin(_uart_nr, detectedBaudRate, config, rxPin, txPin, _rxBufferSize, invert, rxfifo_full_thrhd);
} else {
log_e("Could not detect baudrate. Serial data at the port must be present within the timeout for detection to be possible");
_uart = NULL;
}
}
// create a task to deal with Serial Events when, for example, calling begin() twice to change the baudrate,
// or when setting the callback before calling begin()
if (_uart != NULL && (_onReceiveCB != NULL || _onReceiveErrorCB != NULL) && _eventTask == NULL) {
_createEventTask(this);
}
HSERIAL_MUTEX_UNLOCK();
}
void HardwareSerial::updateBaudRate(unsigned long baud)
{
uartSetBaudRate(_uart, baud);
}
void HardwareSerial::end(bool fullyTerminate)
{
// default Serial.end() will completely disable HardwareSerial,
// including any tasks or debug message channel (log_x()) - but not for IDF log messages!
if(fullyTerminate) {
_onReceiveCB = NULL;
_onReceiveErrorCB = NULL;
if (uartGetDebug() == _uart_nr) {
uartSetDebug(0);
}
}
delay(10);
uartEnd(_uart);
_uart = 0;
_destroyEventTask();
}
void HardwareSerial::setDebugOutput(bool en)
{
if(_uart == 0) {
return;
}
if(en) {
uartSetDebug(_uart);
} else {
if(uartGetDebug() == _uart_nr) {
uartSetDebug(NULL);
}
}
}
int HardwareSerial::available(void)
{
return uartAvailable(_uart);
}
int HardwareSerial::availableForWrite(void)
{
return uartAvailableForWrite(_uart);
}
int HardwareSerial::peek(void)
{
if (available()) {
return uartPeek(_uart);
}
return -1;
}
int HardwareSerial::read(void)
{
if(available()) {
return uartRead(_uart);
}
return -1;
}
// read characters into buffer
// terminates if size characters have been read, or no further are pending
// returns the number of characters placed in the buffer
// the buffer is NOT null terminated.
size_t HardwareSerial::read(uint8_t *buffer, size_t size)
{
size_t avail = available();
if (size < avail) {
avail = size;
}
size_t count = 0;
while(count < avail) {
*buffer++ = uartRead(_uart);
count++;
}
return count;
}
void HardwareSerial::flush(void)
{
uartFlush(_uart);
}
void HardwareSerial::flush(bool txOnly)
{
uartFlushTxOnly(_uart, txOnly);
}
size_t HardwareSerial::write(uint8_t c)
{
uartWrite(_uart, c);
return 1;
}
size_t HardwareSerial::write(const uint8_t *buffer, size_t size)
{
uartWriteBuf(_uart, buffer, size);
return size;
}
uint32_t HardwareSerial::baudRate()
{
return uartGetBaudRate(_uart);
}
HardwareSerial::operator bool() const
{
return uartIsDriverInstalled(_uart);
}
void HardwareSerial::setRxInvert(bool invert)
{
uartSetRxInvert(_uart, invert);
}
// negative Pin value will keep it unmodified
void HardwareSerial::setPins(int8_t rxPin, int8_t txPin, int8_t ctsPin, int8_t rtsPin)
{
uartSetPins(_uart, rxPin, txPin, ctsPin, rtsPin);
}
// Enables or disables Hardware Flow Control using RTS and/or CTS pins (must use setAllPins() before)
void HardwareSerial::setHwFlowCtrlMode(uint8_t mode, uint8_t threshold)
{
uartSetHwFlowCtrlMode(_uart, mode, threshold);
}
size_t HardwareSerial::setRxBufferSize(size_t new_size) {
if (_uart) {
log_e("RX Buffer can't be resized when Serial is already running.\n");
return 0;
}
if (new_size <= SOC_UART_FIFO_LEN) {
log_e("RX Buffer must be higher than %d.\n", SOC_UART_FIFO_LEN);
return 0;
}
_rxBufferSize = new_size;
return _rxBufferSize;
}