Skip to content

Commit 7121a6d

Browse files
committed
Project Euler : fix solution for problem 20 (Factorial digit sum).
1 parent 7af7a1f commit 7121a6d

File tree

1 file changed

+32
-14
lines changed

1 file changed

+32
-14
lines changed

Project-Euler/Problem020.js

+32-14
Original file line numberDiff line numberDiff line change
@@ -1,21 +1,39 @@
1-
/*
2-
Factorial digit sum
1+
/**
2+
* Problem 20 - Factorial digit sum
3+
*
4+
* @see {@link https://projecteuler.net/problem=20}
5+
*
6+
* n! means n × (n − 1) × ... × 3 × 2 × 1
7+
*
8+
* For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800,
9+
* and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27
10+
*
11+
* Find the sum of the digits in the number 100!
12+
*/
313

4-
n! means n × (n − 1) × ... × 3 × 2 × 1
14+
const factorialDigitSum = function (n = 100) {
515

6-
For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800,
7-
and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.
16+
// Consider each digit*10^exp separately, right-to-left ([units, tens, ...]).
17+
let digits = [1];
818

9-
Find the sum of the digits in the number 100!
10-
*/
19+
for (let x=2; x<=n; x++) {
20+
let carry = 0;
21+
for (let exp=0; exp<digits.length; exp++) {
22+
const prod = digits[exp]*x + carry;
23+
carry = Math.floor(prod/10);
24+
digits[exp] = prod % 10;
25+
}
26+
while (carry > 0) {
27+
digits.push(carry%10);
28+
carry = Math.floor(carry/10);
29+
}
30+
}
1131

12-
const findFactorialDigitSum = (num) => {
13-
let result = 0
14-
const stringifiedNumber = factorize(num).toLocaleString('fullwide', { useGrouping: false })
15-
stringifiedNumber.split('').map(num => { result += Number(num) })
16-
return result
32+
// (digits are reversed but we only want the sum so it doesn't matter)
33+
34+
return digits.reduce((prev, current) => prev + current, 0)
1735
}
1836

19-
const factorize = (num) => num === 0 ? 1 : num * factorize(num - 1)
37+
console.log('Factorial digit sum of 100! :', factorialDigitSum())
2038

21-
console.log(findFactorialDigitSum(100))
39+
module.exports = factorialDigitSum

0 commit comments

Comments
 (0)