forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinorder_tree_traversal_2022.py
77 lines (65 loc) · 1.89 KB
/
inorder_tree_traversal_2022.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"""
Illustrate how to implement inorder traversal in binary search tree.
Author: Gurneet Singh
https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
"""
"""
5 items had no tests:
__main__
__main__.BinaryTreeNode
__main__.BinaryTreeNode.__init__
__main__.inorder
__main__.insert
0 tests in 5 items.
0 passed and 0 failed.
Test passed.
Printing values of binary search tree in Inorder Traversal.
6
10
14
15
20
25
60
"""
class BinaryTreeNode:
"""Defining the structure of BinaryTreeNode"""
def __init__(self, data: int) -> None:
self.data = data
self.left_Child = None
self.right_Child = None
def insert(
node: None, new_Value: int
) -> BinaryTreeNode: # if binary search tree is empty, make a new node and declare it as root
if node is None:
node = BinaryTreeNode(new_Value)
return node
# binary search tree is not empty, so we will insert it into the tree
# if new_Value is less than value of data in node, add it to left subtree and proceed recursively
if new_Value < node.data:
node.left_Child = insert(node.left_Child, new_Value)
else:
# if new_Value is greater than value of data in node, add it to right subtree and proceed recursively
node.right_Child = insert(node.right_Child, new_Value)
return node
def inorder(node: None) -> None: # if node is None,return
if node == None:
return
# traverse left subtree
inorder(node.left_Child)
# traverse current node
print(node.data)
# traverse right subtree
inorder(node.right_Child)
if __name__ == "__main__":
import doctest
doctest.testmod()
root = insert(None, 15)
insert(root, 10)
insert(root, 25)
insert(root, 6)
insert(root, 14)
insert(root, 20)
insert(root, 60)
print("Printing values of binary search tree in Inorder Traversal.")
inorder(root)