forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.pyx
673 lines (524 loc) · 21.2 KB
/
index.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
import warnings
import numpy as np
cimport numpy as cnp
from numpy cimport (
float32_t,
float64_t,
int8_t,
int16_t,
int32_t,
int64_t,
intp_t,
ndarray,
uint8_t,
uint16_t,
uint32_t,
uint64_t,
)
cnp.import_array()
cimport pandas._libs.util as util
from pandas._libs.tslibs import Period
from pandas._libs.tslibs.nattype cimport c_NaT as NaT
from pandas._libs.tslibs.c_timestamp cimport _Timestamp
from pandas._libs.hashtable cimport HashTable
from pandas._libs import algos, hashtable as _hash
from pandas._libs.tslibs import Timedelta, period as periodlib
from pandas._libs.missing import checknull
cdef inline bint is_definitely_invalid_key(object val):
try:
hash(val)
except TypeError:
return True
return False
# Don't populate hash tables in monotonic indexes larger than this
_SIZE_CUTOFF = 1_000_000
cdef class IndexEngine:
cdef readonly:
object vgetter
HashTable mapping
bint over_size_threshold
cdef:
bint unique, monotonic_inc, monotonic_dec
bint need_monotonic_check, need_unique_check
def __init__(self, vgetter, n):
self.vgetter = vgetter
self.over_size_threshold = n >= _SIZE_CUTOFF
self.clear_mapping()
def __contains__(self, val: object) -> bool:
# We assume before we get here:
# - val is hashable
self._ensure_mapping_populated()
return val in self.mapping
cpdef get_loc(self, object val):
cdef:
Py_ssize_t loc
if is_definitely_invalid_key(val):
raise TypeError(f"'{val}' is an invalid key")
if self.over_size_threshold and self.is_monotonic_increasing:
if not self.is_unique:
return self._get_loc_duplicates(val)
values = self._get_index_values()
self._check_type(val)
loc = _bin_search(values, val) # .searchsorted(val, side='left')
if loc >= len(values):
raise KeyError(val)
if values[loc] != val:
raise KeyError(val)
return loc
self._ensure_mapping_populated()
if not self.unique:
return self._get_loc_duplicates(val)
self._check_type(val)
try:
return self.mapping.get_item(val)
except (TypeError, ValueError):
raise KeyError(val)
cdef inline _get_loc_duplicates(self, object val):
cdef:
Py_ssize_t diff
if self.is_monotonic_increasing:
values = self._get_index_values()
try:
left = values.searchsorted(val, side='left')
right = values.searchsorted(val, side='right')
except TypeError:
# e.g. GH#29189 get_loc(None) with a Float64Index
raise KeyError(val)
diff = right - left
if diff == 0:
raise KeyError(val)
elif diff == 1:
return left
else:
return slice(left, right)
return self._maybe_get_bool_indexer(val)
cdef _maybe_get_bool_indexer(self, object val):
cdef:
ndarray[uint8_t, ndim=1, cast=True] indexer
indexer = self._get_index_values() == val
return self._unpack_bool_indexer(indexer, val)
cdef _unpack_bool_indexer(self,
ndarray[uint8_t, ndim=1, cast=True] indexer,
object val):
cdef:
ndarray[intp_t, ndim=1] found
int count
found = np.where(indexer)[0]
count = len(found)
if count > 1:
return indexer
if count == 1:
return int(found[0])
raise KeyError(val)
def sizeof(self, deep: bool = False) -> int:
""" return the sizeof our mapping """
if not self.is_mapping_populated:
return 0
return self.mapping.sizeof(deep=deep)
def __sizeof__(self) -> int:
return self.sizeof()
@property
def is_unique(self) -> bool:
if self.need_unique_check:
self._do_unique_check()
return self.unique == 1
cdef inline _do_unique_check(self):
# this de-facto the same
self._ensure_mapping_populated()
@property
def is_monotonic_increasing(self) -> bool:
if self.need_monotonic_check:
self._do_monotonic_check()
return self.monotonic_inc == 1
@property
def is_monotonic_decreasing(self) -> bool:
if self.need_monotonic_check:
self._do_monotonic_check()
return self.monotonic_dec == 1
cdef inline _do_monotonic_check(self):
cdef:
bint is_unique
try:
values = self._get_index_values()
self.monotonic_inc, self.monotonic_dec, is_unique = \
self._call_monotonic(values)
except TypeError:
self.monotonic_inc = 0
self.monotonic_dec = 0
is_unique = 0
self.need_monotonic_check = 0
# we can only be sure of uniqueness if is_unique=1
if is_unique:
self.unique = 1
self.need_unique_check = 0
cdef _get_index_values(self):
return self.vgetter()
cdef _call_monotonic(self, values):
return algos.is_monotonic(values, timelike=False)
def get_backfill_indexer(self, other: np.ndarray, limit=None) -> np.ndarray:
return algos.backfill(self._get_index_values(), other, limit=limit)
def get_pad_indexer(self, other: np.ndarray, limit=None) -> np.ndarray:
return algos.pad(self._get_index_values(), other, limit=limit)
cdef _make_hash_table(self, Py_ssize_t n):
raise NotImplementedError
cdef _check_type(self, object val):
hash(val)
@property
def is_mapping_populated(self) -> bool:
return self.mapping is not None
cdef inline _ensure_mapping_populated(self):
# this populates the mapping
# if its not already populated
# also satisfies the need_unique_check
if not self.is_mapping_populated:
values = self._get_index_values()
self.mapping = self._make_hash_table(len(values))
self._call_map_locations(values)
if len(self.mapping) == len(values):
self.unique = 1
self.need_unique_check = 0
cdef void _call_map_locations(self, values):
self.mapping.map_locations(values)
def clear_mapping(self):
self.mapping = None
self.need_monotonic_check = 1
self.need_unique_check = 1
self.unique = 0
self.monotonic_inc = 0
self.monotonic_dec = 0
def get_indexer(self, values):
self._ensure_mapping_populated()
return self.mapping.lookup(values)
def get_indexer_non_unique(self, targets):
"""
Return an indexer suitable for taking from a non unique index
return the labels in the same order ast the target
and a missing indexer into the targets (which correspond
to the -1 indices in the results
"""
cdef:
ndarray values, x
ndarray[int64_t] result, missing
set stargets, remaining_stargets
dict d = {}
object val
int count = 0, count_missing = 0
Py_ssize_t i, j, n, n_t, n_alloc
self._ensure_mapping_populated()
values = np.array(self._get_index_values(), copy=False)
stargets = set(targets)
n = len(values)
n_t = len(targets)
if n > 10_000:
n_alloc = 10_000
else:
n_alloc = n
result = np.empty(n_alloc, dtype=np.int64)
missing = np.empty(n_t, dtype=np.int64)
# map each starget to its position in the index
if stargets and len(stargets) < 5 and self.is_monotonic_increasing:
# if there are few enough stargets and the index is monotonically
# increasing, then use binary search for each starget
remaining_stargets = set()
for starget in stargets:
try:
start = values.searchsorted(starget, side='left')
end = values.searchsorted(starget, side='right')
except TypeError: # e.g. if we tried to search for string in int array
remaining_stargets.add(starget)
else:
if start != end:
d[starget] = list(range(start, end))
stargets = remaining_stargets
if stargets:
# otherwise, map by iterating through all items in the index
for i in range(n):
val = values[i]
if val in stargets:
if val not in d:
d[val] = []
d[val].append(i)
for i in range(n_t):
val = targets[i]
# found
if val in d:
for j in d[val]:
# realloc if needed
if count >= n_alloc:
n_alloc += 10_000
result = np.resize(result, n_alloc)
result[count] = j
count += 1
# value not found
else:
if count >= n_alloc:
n_alloc += 10_000
result = np.resize(result, n_alloc)
result[count] = -1
count += 1
missing[count_missing] = i
count_missing += 1
return result[0:count], missing[0:count_missing]
cdef Py_ssize_t _bin_search(ndarray values, object val) except -1:
cdef:
Py_ssize_t mid = 0, lo = 0, hi = len(values) - 1
object pval
if hi == 0 or (hi > 0 and val > values[hi]):
return len(values)
while lo < hi:
mid = (lo + hi) // 2
pval = values[mid]
if val < pval:
hi = mid
elif val > pval:
lo = mid + 1
else:
while mid > 0 and val == values[mid - 1]:
mid -= 1
return mid
if val <= values[mid]:
return mid
else:
return mid + 1
cdef class ObjectEngine(IndexEngine):
"""
Index Engine for use with object-dtype Index, namely the base class Index.
"""
cdef _make_hash_table(self, Py_ssize_t n):
return _hash.PyObjectHashTable(n)
cdef class DatetimeEngine(Int64Engine):
cdef str _get_box_dtype(self):
return 'M8[ns]'
cdef int64_t _unbox_scalar(self, scalar) except? -1:
# NB: caller is responsible for ensuring tzawareness compat
# before we get here
if not (isinstance(scalar, _Timestamp) or scalar is NaT):
raise TypeError(scalar)
return scalar.value
def __contains__(self, val: object) -> bool:
# We assume before we get here:
# - val is hashable
cdef:
int64_t loc, conv
conv = self._unbox_scalar(val)
if self.over_size_threshold and self.is_monotonic_increasing:
if not self.is_unique:
return self._get_loc_duplicates(conv)
values = self._get_index_values()
loc = values.searchsorted(conv, side='left')
return values[loc] == conv
self._ensure_mapping_populated()
return conv in self.mapping
cdef _get_index_values(self):
return self.vgetter().view('i8')
cdef _call_monotonic(self, values):
return algos.is_monotonic(values, timelike=True)
cpdef get_loc(self, object val):
# NB: the caller is responsible for ensuring that we are called
# with either a Timestamp or NaT (Timedelta or NaT for TimedeltaEngine)
cdef:
int64_t loc
if is_definitely_invalid_key(val):
raise TypeError(f"'{val}' is an invalid key")
try:
conv = self._unbox_scalar(val)
except TypeError:
raise KeyError(val)
# Welcome to the spaghetti factory
if self.over_size_threshold and self.is_monotonic_increasing:
if not self.is_unique:
return self._get_loc_duplicates(conv)
values = self._get_index_values()
loc = values.searchsorted(conv, side='left')
if loc == len(values) or values[loc] != conv:
raise KeyError(val)
return loc
self._ensure_mapping_populated()
if not self.unique:
return self._get_loc_duplicates(conv)
try:
return self.mapping.get_item(conv)
except KeyError:
raise KeyError(val)
def get_indexer(self, values):
self._ensure_mapping_populated()
if values.dtype != self._get_box_dtype():
return np.repeat(-1, len(values)).astype('i4')
values = np.asarray(values).view('i8')
return self.mapping.lookup(values)
def get_pad_indexer(self, other: np.ndarray, limit=None) -> np.ndarray:
if other.dtype != self._get_box_dtype():
return np.repeat(-1, len(other)).astype('i4')
other = np.asarray(other).view('i8')
return algos.pad(self._get_index_values(), other, limit=limit)
def get_backfill_indexer(self, other: np.ndarray, limit=None) -> np.ndarray:
if other.dtype != self._get_box_dtype():
return np.repeat(-1, len(other)).astype('i4')
other = np.asarray(other).view('i8')
return algos.backfill(self._get_index_values(), other, limit=limit)
cdef class TimedeltaEngine(DatetimeEngine):
cdef str _get_box_dtype(self):
return 'm8[ns]'
cdef int64_t _unbox_scalar(self, scalar) except? -1:
if not (isinstance(scalar, Timedelta) or scalar is NaT):
raise TypeError(scalar)
return scalar.value
cdef class PeriodEngine(Int64Engine):
cdef int64_t _unbox_scalar(self, scalar) except? -1:
if scalar is NaT:
return scalar.value
if isinstance(scalar, Period):
# NB: we assume that we have the correct freq here.
return scalar.ordinal
raise TypeError(scalar)
cpdef get_loc(self, object val):
# NB: the caller is responsible for ensuring that we are called
# with either a Period or NaT
cdef:
int64_t conv
try:
conv = self._unbox_scalar(val)
except TypeError:
raise KeyError(val)
return Int64Engine.get_loc(self, conv)
cdef _get_index_values(self):
return super(PeriodEngine, self).vgetter().view("i8")
cdef _call_monotonic(self, values):
return algos.is_monotonic(values, timelike=True)
def get_indexer(self, values):
cdef:
ndarray[int64_t, ndim=1] ordinals
super(PeriodEngine, self)._ensure_mapping_populated()
freq = super(PeriodEngine, self).vgetter().freq
ordinals = periodlib.extract_ordinals(values, freq)
return self.mapping.lookup(ordinals)
def get_pad_indexer(self, other: np.ndarray, limit=None) -> np.ndarray:
freq = super(PeriodEngine, self).vgetter().freq
ordinal = periodlib.extract_ordinals(other, freq)
return algos.pad(self._get_index_values(),
np.asarray(ordinal), limit=limit)
def get_backfill_indexer(self, other: np.ndarray, limit=None) -> np.ndarray:
freq = super(PeriodEngine, self).vgetter().freq
ordinal = periodlib.extract_ordinals(other, freq)
return algos.backfill(self._get_index_values(),
np.asarray(ordinal), limit=limit)
def get_indexer_non_unique(self, targets):
freq = super(PeriodEngine, self).vgetter().freq
ordinal = periodlib.extract_ordinals(targets, freq)
ordinal_array = np.asarray(ordinal)
return super(PeriodEngine, self).get_indexer_non_unique(ordinal_array)
cdef class BaseMultiIndexCodesEngine:
"""
Base class for MultiIndexUIntEngine and MultiIndexPyIntEngine, which
represent each label in a MultiIndex as an integer, by juxtaposing the bits
encoding each level, with appropriate offsets.
For instance: if 3 levels have respectively 3, 6 and 1 possible values,
then their labels can be represented using respectively 2, 3 and 1 bits,
as follows:
_ _ _ _____ _ __ __ __
|0|0|0| ... |0| 0|a1|a0| -> offset 0 (first level)
— — — ————— — —— —— ——
|0|0|0| ... |0|b2|b1|b0| -> offset 2 (bits required for first level)
— — — ————— — —— —— ——
|0|0|0| ... |0| 0| 0|c0| -> offset 5 (bits required for first two levels)
‾ ‾ ‾ ‾‾‾‾‾ ‾ ‾‾ ‾‾ ‾‾
and the resulting unsigned integer representation will be:
_ _ _ _____ _ __ __ __ __ __ __
|0|0|0| ... |0|c0|b2|b1|b0|a1|a0|
‾ ‾ ‾ ‾‾‾‾‾ ‾ ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ ‾‾
Offsets are calculated at initialization, labels are transformed by method
_codes_to_ints.
Keys are located by first locating each component against the respective
level, then locating (the integer representation of) codes.
"""
def __init__(self, object levels, object labels,
ndarray[uint64_t, ndim=1] offsets):
"""
Parameters
----------
levels : list-like of numpy arrays
Levels of the MultiIndex.
labels : list-like of numpy arrays of integer dtype
Labels of the MultiIndex.
offsets : numpy array of uint64 dtype
Pre-calculated offsets, one for each level of the index.
"""
self.levels = levels
self.offsets = offsets
# Transform labels in a single array, and add 1 so that we are working
# with positive integers (-1 for NaN becomes 0):
codes = (np.array(labels, dtype='int64').T + 1).astype('uint64',
copy=False)
# Map each codes combination in the index to an integer unambiguously
# (no collisions possible), based on the "offsets", which describe the
# number of bits to switch labels for each level:
lab_ints = self._codes_to_ints(codes)
# Initialize underlying index (e.g. libindex.UInt64Engine) with
# integers representing labels: we will use its get_loc and get_indexer
self._base.__init__(self, lambda: lab_ints, len(lab_ints))
def _codes_to_ints(self, codes):
raise NotImplementedError("Implemented by subclass")
def _extract_level_codes(self, object target):
"""
Map the requested list of (tuple) keys to their integer representations
for searching in the underlying integer index.
Parameters
----------
target : list-like of keys
Each key is a tuple, with a label for each level of the index.
Returns
------
int_keys : 1-dimensional array of dtype uint64 or object
Integers representing one combination each
"""
level_codes = [lev.get_indexer(codes) + 1 for lev, codes
in zip(self.levels, zip(*target))]
return self._codes_to_ints(np.array(level_codes, dtype='uint64').T)
def get_indexer(self, object target, object method=None,
object limit=None):
lab_ints = self._extract_level_codes(target)
# All methods (exact, backfill, pad) directly map to the respective
# methods of the underlying (integers) index...
if method is not None:
# but underlying backfill and pad methods require index and keys
# to be sorted. The index already is (checked in
# Index._get_fill_indexer), sort (integer representations of) keys:
order = np.argsort(lab_ints)
lab_ints = lab_ints[order]
indexer = (getattr(self._base, f'get_{method}_indexer')
(self, lab_ints, limit=limit))
indexer = indexer[order]
else:
indexer = self._base.get_indexer(self, lab_ints)
return indexer
def get_loc(self, object key):
if is_definitely_invalid_key(key):
raise TypeError(f"'{key}' is an invalid key")
if not isinstance(key, tuple):
raise KeyError(key)
try:
indices = [0 if checknull(v) else lev.get_loc(v) + 1
for lev, v in zip(self.levels, key)]
except KeyError:
raise KeyError(key)
# Transform indices into single integer:
lab_int = self._codes_to_ints(np.array(indices, dtype='uint64'))
return self._base.get_loc(self, lab_int)
def get_indexer_non_unique(self, object target):
# This needs to be overridden just because the default one works on
# target._values, and target can be itself a MultiIndex.
lab_ints = self._extract_level_codes(target)
indexer = self._base.get_indexer_non_unique(self, lab_ints)
return indexer
def __contains__(self, val: object) -> bool:
# We assume before we get here:
# - val is hashable
# Default __contains__ looks in the underlying mapping, which in this
# case only contains integer representations.
try:
self.get_loc(val)
return True
except (KeyError, TypeError, ValueError):
return False
# Generated from template.
include "index_class_helper.pxi"