|
| 1 | +# https://en.wikipedia.org/wiki/Simulated_annealing |
| 2 | +import math, random |
| 3 | +from hill_climbing import SearchProblem |
| 4 | + |
| 5 | + |
| 6 | +def simulated_annealing( |
| 7 | + search_prob, |
| 8 | + find_max: bool = True, |
| 9 | + max_x: float = math.inf, |
| 10 | + min_x: float = -math.inf, |
| 11 | + max_y: float = math.inf, |
| 12 | + min_y: float = -math.inf, |
| 13 | + visualization: bool = False, |
| 14 | + start_temperate: float = 100, |
| 15 | + rate_of_decrease: float = 0.01, |
| 16 | + threshold_temp: float = 1, |
| 17 | +) -> SearchProblem: |
| 18 | + """ |
| 19 | + implementation of the simulated annealing algorithm. We start with a given state, find |
| 20 | + all its neighbors. Pick a random neighbor, if that neighbor improves the solution, we move |
| 21 | + in that direction, if that neighbor does not improve the solution, we generate a random |
| 22 | + real number between 0 and 1, if the number is within a certain range (calculated using |
| 23 | + temperature) we move in that direction, else we pick another neighbor randomly and repeat the process. |
| 24 | + Args: |
| 25 | + search_prob: The search state at the start. |
| 26 | + find_max: If True, the algorithm should find the minimum else the minimum. |
| 27 | + max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y. |
| 28 | + visualization: If True, a matplotlib graph is displayed. |
| 29 | + start_temperate: the initial temperate of the system when the program starts. |
| 30 | + rate_of_decrease: the rate at which the temperate decreases in each iteration. |
| 31 | + threshold_temp: the threshold temperature below which we end the search |
| 32 | + Returns a search state having the maximum (or minimum) score. |
| 33 | + """ |
| 34 | + search_end = False |
| 35 | + current_state = search_prob |
| 36 | + current_temp = start_temperate |
| 37 | + scores = [] |
| 38 | + iterations = 0 |
| 39 | + best_state = None |
| 40 | + |
| 41 | + while not search_end: |
| 42 | + current_score = current_state.score() |
| 43 | + if best_state is None or current_score > best_state.score(): |
| 44 | + best_state = current_state |
| 45 | + scores.append(current_score) |
| 46 | + iterations += 1 |
| 47 | + next_state = None |
| 48 | + neighbors = current_state.get_neighbors() |
| 49 | + while ( |
| 50 | + next_state is None and neighbors |
| 51 | + ): # till we do not find a neighbor that we can move to |
| 52 | + index = random.randint(0, len(neighbors) - 1) # picking a random neighbor |
| 53 | + picked_neighbor = neighbors.pop(index) |
| 54 | + change = picked_neighbor.score() - current_score |
| 55 | + |
| 56 | + if ( |
| 57 | + picked_neighbor.x > max_x |
| 58 | + or picked_neighbor.x < min_x |
| 59 | + or picked_neighbor.y > max_y |
| 60 | + or picked_neighbor.y < min_y |
| 61 | + ): |
| 62 | + continue # neighbor outside our bounds |
| 63 | + |
| 64 | + if not find_max: |
| 65 | + change = change * -1 # incase we are finding minimum |
| 66 | + if change > 0: # improves the solution |
| 67 | + next_state = picked_neighbor |
| 68 | + else: |
| 69 | + probabililty = (math.e) ** ( |
| 70 | + change / current_temp |
| 71 | + ) # probability generation function |
| 72 | + if random.random() < probabililty: # random number within probability |
| 73 | + next_state = picked_neighbor |
| 74 | + current_temp = current_temp - (current_temp * rate_of_decrease) |
| 75 | + |
| 76 | + if ( |
| 77 | + current_temp < threshold_temp or next_state is None |
| 78 | + ): # temperature below threshold, or |
| 79 | + # couldnt find a suitaable neighbor |
| 80 | + search_end = True |
| 81 | + else: |
| 82 | + current_state = next_state |
| 83 | + |
| 84 | + if visualization: |
| 85 | + import matplotlib.pyplot as plt |
| 86 | + |
| 87 | + plt.plot(range(iterations), scores) |
| 88 | + plt.xlabel("Iterations") |
| 89 | + plt.ylabel("Function values") |
| 90 | + plt.show() |
| 91 | + return best_state |
| 92 | + |
| 93 | + |
| 94 | +if __name__ == "__main__": |
| 95 | + |
| 96 | + def test_f1(x, y): |
| 97 | + return (x ** 2) + (y ** 2) |
| 98 | + |
| 99 | + # starting the problem with initial coordinates (12, 47) |
| 100 | + prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) |
| 101 | + local_min = simulated_annealing( |
| 102 | + prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True |
| 103 | + ) |
| 104 | + print( |
| 105 | + "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " |
| 106 | + f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" |
| 107 | + ) |
| 108 | + |
| 109 | + # starting the problem with initial coordinates (12, 47) |
| 110 | + prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) |
| 111 | + local_min = simulated_annealing( |
| 112 | + prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True |
| 113 | + ) |
| 114 | + print( |
| 115 | + "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " |
| 116 | + f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" |
| 117 | + ) |
| 118 | + |
| 119 | + def test_f2(x, y): |
| 120 | + return (3 * x ** 2) - (6 * y) |
| 121 | + |
| 122 | + prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) |
| 123 | + local_min = simulated_annealing(prob, find_max=False, visualization=True) |
| 124 | + print( |
| 125 | + "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " |
| 126 | + f"{local_min.score()}" |
| 127 | + ) |
| 128 | + |
| 129 | + prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) |
| 130 | + local_min = simulated_annealing(prob, find_max=True, visualization=True) |
| 131 | + print( |
| 132 | + "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " |
| 133 | + f"{local_min.score()}" |
| 134 | + ) |
0 commit comments