|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from sklearn.preprocessing import KBinsDiscretizer as sk_KBinsDiscretizer |
| 4 | + |
| 5 | +from safeds.data.tabular.containers import Table |
| 6 | +from safeds.data.tabular.transformation._table_transformer import TableTransformer |
| 7 | +from safeds.exceptions import NonNumericColumnError, TransformerNotFittedError, UnknownColumnNameError |
| 8 | + |
| 9 | + |
| 10 | +class Discretizer(TableTransformer): |
| 11 | + """ |
| 12 | + The Discretizer bins continuous data into intervals. |
| 13 | +
|
| 14 | + Parameters |
| 15 | + ---------- |
| 16 | + number_of_bins: float |
| 17 | + The number of bins to be created. |
| 18 | +
|
| 19 | + Raises |
| 20 | + ------ |
| 21 | + ValueError |
| 22 | + If the given number_of_bins is less than 2. |
| 23 | + """ |
| 24 | + |
| 25 | + def __init__(self, number_of_bins: float = 5): |
| 26 | + self._column_names: list[str] | None = None |
| 27 | + self._wrapped_transformer: sk_KBinsDiscretizer | None = None |
| 28 | + |
| 29 | + if number_of_bins < 2: |
| 30 | + raise ValueError("Parameter 'number_of_bins' must be >= 2.") |
| 31 | + self._number_of_bins = number_of_bins |
| 32 | + |
| 33 | + def fit(self, table: Table, column_names: list[str] | None) -> Discretizer: |
| 34 | + """ |
| 35 | + Learn a transformation for a set of columns in a table. |
| 36 | +
|
| 37 | + This transformer is not modified. |
| 38 | +
|
| 39 | + Parameters |
| 40 | + ---------- |
| 41 | + table : Table |
| 42 | + The table used to fit the transformer. |
| 43 | + column_names : list[str] | None |
| 44 | + The list of columns from the table used to fit the transformer. If `None`, all columns are used. |
| 45 | +
|
| 46 | + Returns |
| 47 | + ------- |
| 48 | + fitted_transformer : TableTransformer |
| 49 | + The fitted transformer. |
| 50 | +
|
| 51 | + Raises |
| 52 | + ------ |
| 53 | + ValueError |
| 54 | + If the table is empty. |
| 55 | + NonNumericColumnError |
| 56 | + If one of the columns, that should be fitted is non-numeric. |
| 57 | + UnknownColumnNameError |
| 58 | + If one of the columns, that should be fitted is not in the table. |
| 59 | + """ |
| 60 | + if table.number_of_rows == 0: |
| 61 | + raise ValueError("The Discretizer cannot be fitted because the table contains 0 rows") |
| 62 | + |
| 63 | + if column_names is None: |
| 64 | + column_names = table.column_names |
| 65 | + else: |
| 66 | + missing_columns = set(column_names) - set(table.column_names) |
| 67 | + if len(missing_columns) > 0: |
| 68 | + raise UnknownColumnNameError( |
| 69 | + sorted( |
| 70 | + missing_columns, |
| 71 | + key={val: ix for ix, val in enumerate(column_names)}.__getitem__, |
| 72 | + ), |
| 73 | + ) |
| 74 | + |
| 75 | + for column in column_names: |
| 76 | + if not table.get_column(column).type.is_numeric(): |
| 77 | + raise NonNumericColumnError(f"{column} is of type {table.get_column(column).type}.") |
| 78 | + |
| 79 | + wrapped_transformer = sk_KBinsDiscretizer(n_bins=self._number_of_bins, encode="ordinal") |
| 80 | + wrapped_transformer.fit(table._data[column_names]) |
| 81 | + |
| 82 | + result = Discretizer(self._number_of_bins) |
| 83 | + result._wrapped_transformer = wrapped_transformer |
| 84 | + result._column_names = column_names |
| 85 | + |
| 86 | + return result |
| 87 | + |
| 88 | + def transform(self, table: Table) -> Table: |
| 89 | + """ |
| 90 | + Apply the learned transformation to a table. |
| 91 | +
|
| 92 | + The table is not modified. |
| 93 | +
|
| 94 | + Parameters |
| 95 | + ---------- |
| 96 | + table : Table |
| 97 | + The table to which the learned transformation is applied. |
| 98 | +
|
| 99 | + Returns |
| 100 | + ------- |
| 101 | + transformed_table : Table |
| 102 | + The transformed table. |
| 103 | +
|
| 104 | + Raises |
| 105 | + ------ |
| 106 | + TransformerNotFittedError |
| 107 | + If the transformer has not been fitted yet. |
| 108 | + ValueError |
| 109 | + If the table is empty. |
| 110 | + UnknownColumnNameError |
| 111 | + If one of the columns, that should be transformed is not in the table. |
| 112 | + NonNumericColumnError |
| 113 | + If one of the columns, that should be fitted is non-numeric. |
| 114 | + """ |
| 115 | + # Transformer has not been fitted yet |
| 116 | + if self._wrapped_transformer is None or self._column_names is None: |
| 117 | + raise TransformerNotFittedError |
| 118 | + |
| 119 | + if table.number_of_rows == 0: |
| 120 | + raise ValueError("The table cannot be transformed because it contains 0 rows") |
| 121 | + |
| 122 | + # Input table does not contain all columns used to fit the transformer |
| 123 | + missing_columns = set(self._column_names) - set(table.column_names) |
| 124 | + if len(missing_columns) > 0: |
| 125 | + raise UnknownColumnNameError( |
| 126 | + sorted( |
| 127 | + missing_columns, |
| 128 | + key={val: ix for ix, val in enumerate(self._column_names)}.__getitem__, |
| 129 | + ), |
| 130 | + ) |
| 131 | + |
| 132 | + for column in self._column_names: |
| 133 | + if not table.get_column(column).type.is_numeric(): |
| 134 | + raise NonNumericColumnError(f"{column} is of type {table.get_column(column).type}.") |
| 135 | + |
| 136 | + data = table._data.copy() |
| 137 | + data.columns = table.column_names |
| 138 | + data[self._column_names] = self._wrapped_transformer.transform(data[self._column_names]) |
| 139 | + return Table._from_pandas_dataframe(data) |
| 140 | + |
| 141 | + def is_fitted(self) -> bool: |
| 142 | + """ |
| 143 | + Check if the transformer is fitted. |
| 144 | +
|
| 145 | + Returns |
| 146 | + ------- |
| 147 | + is_fitted : bool |
| 148 | + Whether the transformer is fitted. |
| 149 | + """ |
| 150 | + return self._wrapped_transformer is not None |
| 151 | + |
| 152 | + def get_names_of_added_columns(self) -> list[str]: |
| 153 | + """ |
| 154 | + Get the names of all new columns that have been added by the Discretizer. |
| 155 | +
|
| 156 | + Returns |
| 157 | + ------- |
| 158 | + added_columns : list[str] |
| 159 | + A list of names of the added columns, ordered as they will appear in the table. |
| 160 | +
|
| 161 | + Raises |
| 162 | + ------ |
| 163 | + TransformerNotFittedError |
| 164 | + If the transformer has not been fitted yet. |
| 165 | + """ |
| 166 | + if not self.is_fitted(): |
| 167 | + raise TransformerNotFittedError |
| 168 | + return [] |
| 169 | + |
| 170 | + # (Must implement abstract method, cannot instantiate class otherwise.) |
| 171 | + def get_names_of_changed_columns(self) -> list[str]: |
| 172 | + """ |
| 173 | + Get the names of all columns that may have been changed by the Discretizer. |
| 174 | +
|
| 175 | + Returns |
| 176 | + ------- |
| 177 | + changed_columns : list[str] |
| 178 | + The list of (potentially) changed column names, as passed to fit. |
| 179 | +
|
| 180 | + Raises |
| 181 | + ------ |
| 182 | + TransformerNotFittedError |
| 183 | + If the transformer has not been fitted yet. |
| 184 | + """ |
| 185 | + if self._column_names is None: |
| 186 | + raise TransformerNotFittedError |
| 187 | + return self._column_names |
| 188 | + |
| 189 | + def get_names_of_removed_columns(self) -> list[str]: |
| 190 | + """ |
| 191 | + Get the names of all columns that have been removed by the Discretizer. |
| 192 | +
|
| 193 | + Returns |
| 194 | + ------- |
| 195 | + removed_columns : list[str] |
| 196 | + A list of names of the removed columns, ordered as they appear in the table the Discretizer was fitted on. |
| 197 | +
|
| 198 | + Raises |
| 199 | + ------ |
| 200 | + TransformerNotFittedError |
| 201 | + If the transformer has not been fitted yet. |
| 202 | + """ |
| 203 | + if not self.is_fitted(): |
| 204 | + raise TransformerNotFittedError |
| 205 | + return [] |
0 commit comments