Skip to content

Commit b75f37a

Browse files
HughKelleyMateusz Górski
authored and
Mateusz Górski
committed
Timedelta index 29236 (pandas-dev#29257)
1 parent 14fd24d commit b75f37a

File tree

2 files changed

+12
-9
lines changed

2 files changed

+12
-9
lines changed

pandas/core/arrays/datetimelike.py

+4-3
Original file line numberDiff line numberDiff line change
@@ -1457,15 +1457,16 @@ def mean(self, skipna=True):
14571457
Parameters
14581458
----------
14591459
skipna : bool, default True
1460-
Whether to ignore any NaT elements
1460+
Whether to ignore any NaT elements.
14611461
14621462
Returns
14631463
-------
1464-
scalar (Timestamp or Timedelta)
1464+
scalar
1465+
Timestamp or Timedelta.
14651466
14661467
See Also
14671468
--------
1468-
numpy.ndarray.mean
1469+
numpy.ndarray.mean : Returns the average of array elements along a given axis.
14691470
Series.mean : Return the mean value in a Series.
14701471
14711472
Notes

pandas/core/indexes/base.py

+8-6
Original file line numberDiff line numberDiff line change
@@ -1169,20 +1169,22 @@ def to_flat_index(self):
11691169

11701170
def to_series(self, index=None, name=None):
11711171
"""
1172-
Create a Series with both index and values equal to the index keys
1173-
useful with map for returning an indexer based on an index.
1172+
Create a Series with both index and values equal to the index keys.
1173+
1174+
Useful with map for returning an indexer based on an index.
11741175
11751176
Parameters
11761177
----------
11771178
index : Index, optional
1178-
index of resulting Series. If None, defaults to original index
1179+
Index of resulting Series. If None, defaults to original index.
11791180
name : str, optional
1180-
name of resulting Series. If None, defaults to name of original
1181-
index
1181+
Dame of resulting Series. If None, defaults to name of original
1182+
index.
11821183
11831184
Returns
11841185
-------
1185-
Series : dtype will be based on the type of the Index values.
1186+
Series
1187+
The dtype will be based on the type of the Index values.
11861188
"""
11871189

11881190
from pandas import Series

0 commit comments

Comments
 (0)