You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* tidy up and update environment
* add additional extensions
* minor changes to lectures
* adjust some math for lp_intro for aligned
* fix opt_transport align* to aligned
@@ -508,15 +508,15 @@ Associated with a linear programming of form {eq}`linprog` with $m$ constraints
508
508
there is an **dual** linear programming problem that takes the form (please see {cite}`bertsimas_tsitsiklis1997`)
509
509
510
510
$$
511
-
\begin{align*}
511
+
\begin{aligned}
512
512
\max_{p} \ & b' p \\
513
513
\mbox{subject to } \ & p_i \ge 0, & i \in M_1 \\
514
514
& p_i \le 0, & i \in M_2 \\
515
515
& p_i\ \text{unrestricted}, & i \in M_3 \\
516
516
& A_j' p \le c_j, & j \in N_1 \\
517
517
& A_j' p \ge c_j, & j \in N_2 \\
518
518
& A_j' p = c_j, & j \in N_3 \\
519
-
\end{align*}
519
+
\end{aligned}
520
520
$$
521
521
522
522
Where $A_j$ is $j$-th column of the $m$ by $n$ matrix $A$.
@@ -562,30 +562,30 @@ The following table summarizes relationships between objects in primal and dual
562
562
As an example, the dual problem of the standard form {eq}`lpproblem` is:
563
563
564
564
$$
565
-
\begin{align*}
565
+
\begin{aligned}
566
566
\max_{p} \ & b'p \\
567
567
\mbox{subject to } \ & A'p \le c\\
568
-
\end{align*}
568
+
\end{aligned}
569
569
$$
570
570
571
571
As another example, consider a linear programming problem with form:
572
572
573
573
$$
574
-
\begin{align*}
574
+
\begin{aligned}
575
575
\max_{x} \ & c'x \\
576
576
\mbox{subject to } \ & A x \le b\\
577
577
& x \ge 0\\
578
-
\end{align*}
578
+
\end{aligned}
579
579
$$ (linprog2)
580
580
581
581
Its dual problem is:
582
582
583
583
$$
584
-
\begin{align*}
584
+
\begin{aligned}
585
585
\min_{p} \ & b'p \\
586
586
\mbox{subject to } \ & A' p \ge c\\
587
587
& p \ge 0\\
588
-
\end{align*}
588
+
\end{aligned}
589
589
$$
590
590
591
591
## Duality Theorems
@@ -690,12 +690,12 @@ This problem is one specific instance of the problem {eq}`linprog2`, whose econo
690
690
Its dual problem is:
691
691
692
692
$$
693
-
\begin{align*}
693
+
\begin{aligned}
694
694
\min_{x_1,x_2} \ & 30 p_1 + 20 p_2 \\
695
695
\mbox{subject to } \ & 2 p_1 + 4 p_2 \ge 3 \\
696
696
& 5 p_1 + 2 p_2 \ge 4 \\
697
697
& p_1, p_2 \ge 0 \\
698
-
\end{align*}
698
+
\end{aligned}
699
699
$$
700
700
701
701
We then solve this dual problem by function *linprog*. Since parameters used here are defined before when solving the primal problem, we don't need to define them here.
@@ -714,7 +714,7 @@ The optimal of the dual problem is 27.5, which is the same as the primal problem
0 commit comments