@@ -169,10 +169,12 @@ c + \sum_{s'} \hat a(s') Q(s' | s)
169
169
170
170
and also
171
171
172
+ $$
172
173
\begin{aligned}
173
174
c & \geq 0, \\
174
175
- \hat a(s') & \leq \bar A^i(s'), \hskip.5cm \forall s'.
175
176
\end{aligned}
177
+ $$
176
178
177
179
with the second constraint evidently being a set of state-by-state debt limits.
178
180
@@ -372,14 +374,15 @@ We can use this recursion to verify the law of iterated expectations applied
372
374
to computing the conditional expectation of a random variable $d(s_ {t+j})$ conditioned
373
375
on $s_t$ via the following string of equalities
374
376
375
-
376
- \begin{align }
377
+ $$
378
+ \begin{aligned }
377
379
E \left[ E d(s_{t+j}) | s_{t+1} \right] | s_t
378
380
& = \sum_{s_{t+1}} \left[ \sum_{s_{t+j}} d(s_{t+j}) P_{j-1}(s_{t+j}| s_{t+1} ) \right] P(s_{t+1} | s_t) \\
379
381
& = \sum_{s_{t+j}} d(s_{t+j}) \left[ \sum_{s_{t+1}} P_{j-1} ( s_{t+j} |s_{t+1}) P(s_{t+1}| s_t) \right] \\
380
382
& = \sum_{s_{t+j}} d(s_{t+j}) P_j (s_{t+j} | s_t ) \\
381
383
& = E d(s_{t+j})| s_t
382
- \end{align}
384
+ \end{aligned}
385
+ $$
383
386
384
387
The pricing kernel for $j$ step ahead Arrow securities satisfies the recursion
385
388
405
408
We verify it by pursuing the following a string of inequalities that are counterparts to those we used
406
409
to verify the law of iterated expectations:
407
410
408
- \begin{align}
411
+ $$
412
+ \begin{aligned}
409
413
V \left[ V ( d(s_{t+j}) | s_{t+1} ) \right] | s_t
410
414
& = \sum_{s_{t+1}} \left[ \sum_{s_{t+j}} d(s_{t+j}) Q_{j-1}(s_{t+j}| s_{t+1} ) \right] Q(s_{t+1} | s_t) \\
411
415
& = \sum_{s_{t+j}} d(s_{t+j}) \left[ \sum_{s_{t+1}} Q_{j-1} ( s_{t+j} |s_{t+1}) Q(s_{t+1}| s_t) \right] \\
412
416
& = \sum_{s_{t+j}} d(s_{t+j}) Q_j (s_{t+j} | s_t ) \\
413
417
& = E V(d(s_{t+j}))| s_t
414
- \end{align}
418
+ \end{aligned}
419
+ $$
415
420
416
421
+++
417
422
@@ -1177,12 +1182,14 @@ $$
1177
1182
1178
1183
Continuation wealths $\psi^k$ of consumer $k$ satisfy
1179
1184
1185
+ $$
1180
1186
\begin{aligned}
1181
1187
\psi_T^k & = \left[\alpha_k y - y^k\right] \cr
1182
- \psi_ {T-1}^k &= \left[ I + Q \right] \left[ \alpha_k y - y^k\right] \cr
1188
+ \psi_{T-1}^k & = \left[I + Q \right] \left[\alpha_k y - y^k\right] \cr
1183
1189
\vdots \quad & \quad \quad \quad \vdots \cr
1184
1190
\psi_0^k & = \left[I + Q + Q^2 + \cdots + Q^T \right] \left[\alpha_k y - y^k\right]
1185
1191
\end{aligned}
1192
+ $$
1186
1193
1187
1194
where
1188
1195
0 commit comments