Skip to content

Commit d7251a3

Browse files
committed
fix issue with align*
1 parent 3dde1bc commit d7251a3

File tree

1 file changed

+13
-6
lines changed

1 file changed

+13
-6
lines changed

lectures/RCE_tom_v13.md

Lines changed: 13 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -169,10 +169,12 @@ c + \sum_{s'} \hat a(s') Q(s' | s)
169169
170170
and also
171171

172+
$$
172173
\begin{aligned}
173174
c & \geq 0, \\
174175
- \hat a(s') & \leq \bar A^i(s'), \hskip.5cm \forall s'.
175176
\end{aligned}
177+
$$
176178

177179
with the second constraint evidently being a set of state-by-state debt limits.
178180

@@ -372,14 +374,15 @@ We can use this recursion to verify the law of iterated expectations applied
372374
to computing the conditional expectation of a random variable $d(s_{t+j})$ conditioned
373375
on $s_t$ via the following string of equalities
374376

375-
376-
\begin{align}
377+
$$
378+
\begin{aligned}
377379
E \left[ E d(s_{t+j}) | s_{t+1} \right] | s_t
378380
& = \sum_{s_{t+1}} \left[ \sum_{s_{t+j}} d(s_{t+j}) P_{j-1}(s_{t+j}| s_{t+1} ) \right] P(s_{t+1} | s_t) \\
379381
& = \sum_{s_{t+j}} d(s_{t+j}) \left[ \sum_{s_{t+1}} P_{j-1} ( s_{t+j} |s_{t+1}) P(s_{t+1}| s_t) \right] \\
380382
& = \sum_{s_{t+j}} d(s_{t+j}) P_j (s_{t+j} | s_t ) \\
381383
& = E d(s_{t+j})| s_t
382-
\end{align}
384+
\end{aligned}
385+
$$
383386

384387
The pricing kernel for $j$ step ahead Arrow securities satisfies the recursion
385388

@@ -405,13 +408,15 @@ $$
405408
We verify it by pursuing the following a string of inequalities that are counterparts to those we used
406409
to verify the law of iterated expectations:
407410

408-
\begin{align}
411+
$$
412+
\begin{aligned}
409413
V \left[ V ( d(s_{t+j}) | s_{t+1} ) \right] | s_t
410414
& = \sum_{s_{t+1}} \left[ \sum_{s_{t+j}} d(s_{t+j}) Q_{j-1}(s_{t+j}| s_{t+1} ) \right] Q(s_{t+1} | s_t) \\
411415
& = \sum_{s_{t+j}} d(s_{t+j}) \left[ \sum_{s_{t+1}} Q_{j-1} ( s_{t+j} |s_{t+1}) Q(s_{t+1}| s_t) \right] \\
412416
& = \sum_{s_{t+j}} d(s_{t+j}) Q_j (s_{t+j} | s_t ) \\
413417
& = E V(d(s_{t+j}))| s_t
414-
\end{align}
418+
\end{aligned}
419+
$$
415420

416421
+++
417422

@@ -1177,12 +1182,14 @@ $$
11771182

11781183
Continuation wealths $\psi^k$ of consumer $k$ satisfy
11791184

1185+
$$
11801186
\begin{aligned}
11811187
\psi_T^k & = \left[\alpha_k y - y^k\right] \cr
1182-
\psi_{T-1}^k &= \left[I + Q \right] \left[\alpha_k y - y^k\right] \cr
1188+
\psi_{T-1}^k & = \left[I + Q \right] \left[\alpha_k y - y^k\right] \cr
11831189
\vdots \quad & \quad \quad \quad \vdots \cr
11841190
\psi_0^k & = \left[I + Q + Q^2 + \cdots + Q^T \right] \left[\alpha_k y - y^k\right]
11851191
\end{aligned}
1192+
$$
11861193

11871194
where
11881195

0 commit comments

Comments
 (0)