@@ -320,7 +320,7 @@ d_series = np.cumprod(g_series) # Assumes d_0 = 1
320
320
series = [x_series, g_series, d_series, np.log(d_series)]
321
321
labels = ['$X_t$', '$g_t$', '$d_t$', r'$\log \, d_t$']
322
322
323
- fig, axes = plt.subplots(2, 2, figsize=(12, 8) )
323
+ fig, axes = plt.subplots(2, 2)
324
324
for ax, s, label in zip(axes.flatten(), series, labels):
325
325
ax.plot(s, 'b-', lw=2, label=label)
326
326
ax.legend(loc='upper left', frameon=False)
@@ -411,7 +411,7 @@ assert np.max(np.abs(eigvals(K))) < 1 / β, warning_message
411
411
I = np.identity(n)
412
412
v = solve(I - β * K, β * K @ np.ones(n))
413
413
414
- fig, ax = plt.subplots(figsize=(12, 8) )
414
+ fig, ax = plt.subplots()
415
415
ax.plot(mc.state_values, v, 'g-o', lw=2, alpha=0.7, label='$v$')
416
416
ax.set_ylabel("price-dividend ratio")
417
417
ax.set_xlabel("state")
@@ -606,7 +606,7 @@ with a positively correlated Markov process and $g(x) = \exp(x)$
606
606
ap = AssetPriceModel()
607
607
states = ap.mc.state_values
608
608
609
- fig, ax = plt.subplots(figsize=(12, 8) )
609
+ fig, ax = plt.subplots()
610
610
611
611
for γ in γs:
612
612
ap.γ = γ
@@ -856,7 +856,7 @@ x = ap.mc.state_values
856
856
p = consol_price(ap, ζ)
857
857
w = call_option(ap, ζ, strike_price)
858
858
859
- fig, ax = plt.subplots(figsize=(12, 8) )
859
+ fig, ax = plt.subplots()
860
860
ax.plot(x, p, 'b-', lw=2, label='consol price')
861
861
ax.plot(x, w, 'g-', lw=2, label='value of call option')
862
862
ax.set_xlabel("state")
0 commit comments