Skip to content

Commit bb3e34c

Browse files
committed
fix opt_transport align* to aligned
1 parent 6d19e45 commit bb3e34c

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

lectures/opt_transport.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -62,12 +62,12 @@ A planner wants to minimize total transportation costs subject to the following
6262
The planner's problem can be expressed as the following constrained minimization problem:
6363

6464
$$
65-
\begin{align*}
65+
\begin{aligned}
6666
\min_{x_{ij}} \ & \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij} \\
6767
\mbox{subject to } \ & \sum_{j=1}^n x_{ij} = p_i, & i = 1, 2, \dots, m \\
6868
& \sum_{i=1}^m x_{ij} = q_j, & j = 1, 2, \dots, n \\
6969
& x_{ij} \ge 0 \\
70-
\end{align*}
70+
\end{aligned}
7171
$$ (plannerproblem)
7272
7373
This is an **optimal transport problem** with
@@ -105,12 +105,12 @@ Let
105105
Where $\mathbf{1}_n$ denotes $n$-dimensional column vector $(1, 1, \dots, 1)'$, our problem can now be expressed compactly as:
106106
107107
$$
108-
\begin{align*}
108+
\begin{aligned}
109109
\min_{X} \ & \operatorname{tr} (C' X) \\
110110
\mbox{subject to } \ & X \ \mathbf{1}_n = p \\
111111
& X' \ \mathbf{1}_m = q \\
112112
& X \ge 0 \\
113-
\end{align*}
113+
\end{aligned}
114114
$$
115115
116116
We can convert the matrix $X$ into a vector by stacking all of its columns into a column vector.
@@ -176,11 +176,11 @@ $$
176176
Our problem can now be expressed in terms of an $mn$-dimensional vector of decision variables:
177177
178178
$$
179-
\begin{align*}
179+
\begin{aligned}
180180
\min_{z} \ & \operatorname{vec}(C)' z \\
181181
\mbox{subject to } \ & A z = b \\
182182
& z \ge 0 \\
183-
\end{align*}
183+
\end{aligned}
184184
$$ (decisionvars)
185185
186186
where
@@ -451,10 +451,10 @@ Let $u, v$ denotes vectors of dual decision variables with entries $(u_i), (v_j)
451451
The **dual** to **minimization** problem {eq}`plannerproblem` is the **maximization** problem:
452452
453453
$$
454-
\begin{align*}
454+
\begin{aligned}
455455
\max_{u_i, v_j} \ & \sum_{i=1}^m p_i u_i + \sum_{j=1}^n q_j v_j \\
456456
\mbox{subject to } \ & u_i + v_j \le c_{ij}, \ i = 1, 2, \dots, m;\ j = 1, 2, \dots, n \\
457-
\end{align*}
457+
\end{aligned}
458458
$$ (dualproblem)
459459
460460
The dual problem is also a linear programming problem.
@@ -476,10 +476,10 @@ Components of the vectors $u$ and $v$ of **values** are **shadow prices** of th
476476
We can write the dual problem as
477477
478478
$$
479-
\begin{align*}
479+
\begin{aligned}
480480
\max_{u_i, v_j} \ & p u + q v \\
481481
\mbox{subject to } \ & A' \begin{bmatrix} u \\ v \\ \end{bmatrix} = \operatorname{vec}(C) \\
482-
\end{align*}
482+
\end{aligned}
483483
$$ (dualproblem2)
484484
485485
For the same numerical example described above, let's solve the dual problem.

0 commit comments

Comments
 (0)