Skip to content

Commit a6748f4

Browse files
authored
[util_rand_resp] Ensure math labels are unique (#226)
* [util_rand_resp] Ensure math labels are unique * update duplicate labels within the document
1 parent 7f050c9 commit a6748f4

File tree

1 file changed

+24
-24
lines changed

1 file changed

+24
-24
lines changed

lectures/util_rand_resp.md

Lines changed: 24 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@ These design probabilities in turn can be used to compute the conditional probab
5454

5555
$$
5656
\text{Pr}(A|r)=\frac{\pi_A \text{Pr}(r|A)}{\pi_A \text{Pr}(r|A)+ (1-\pi_A) \text{Pr}(r|A^{'})}
57-
$$ (eq:one)
57+
$$ (eq:util-rand-one)
5858
5959
6060
## Zoo of Concepts
@@ -71,13 +71,13 @@ $$
7171
\text{or}&\\
7272
\text{Pr}(A^{'}|r)&>1-\pi_A
7373
\end{aligned}
74-
$$ (eq:two)
74+
$$ (eq:util-rand-two)
7575
7676
From Bayes's rule:
7777
7878
$$
7979
\frac{\text{Pr}(A|r)}{\text{Pr}(A^{'}|r)}\times \frac{(1-\pi_A)}{\pi_A} = \frac{\text{Pr}(r|A)}{\text{Pr}(r|A^{'})}
80-
$$ (eq:three)
80+
$$ (eq:util-rand-three)
8181
8282
If this expression is greater (less) than unity, it follows that r is jeopardizing with respect to $A$($A^{'}$). Then, the natural measure of jeopardy will be:
8383
@@ -87,7 +87,7 @@ g(r|A)&=\frac{\text{Pr}(r|A)}{\text{Pr}(r|A^{'})}\\
8787
&\text{and}\\
8888
g(r|A^{'})&=\frac{\text{Pr}(r|A^{'})}{\text{Pr}(r|A)}
8989
\end{aligned}
90-
$$ (eq:four)
90+
$$ (eq:util-rand-four)
9191
9292
9393
Suppose, without loss of generality, that $\text{Pr}(\text{yes}|A)>\text{Pr}(\text{yes}|A^{'})$, then a yes (no) answer is jeopardizing with respect $A$($A^{'}$), that is,
@@ -126,7 +126,7 @@ For that reason, Lanke (1976) {cite}`lanke1976degree` argued that ah appropriat
126126
127127
$$
128128
\max \left\{ \text{Pr}(A|\text{yes}) , \text{Pr}(A|\text{no}) \right\}
129-
$$ (eq:five)
129+
$$ (eq:util-rand-five-a)
130130
131131
Holding this measure constant, he explained under what conditions the smallest variance of the estimate was achieved with the unrelated question model or Warner's (1965) original model.
132132
@@ -138,7 +138,7 @@ They measured "private protection" as
138138
139139
$$
140140
\frac{1-\max \left\{ \text{Pr}(A|\text{yes}) , \text{Pr}(A|\text{no}) \right\}}{1-\pi_A}
141-
$$ (eq:six)
141+
$$ (eq:util-rand-six)
142142
143143
144144
### 2.4 Greenberg, Kuebler, Abernathy, and Horvitz (1977)
@@ -151,27 +151,27 @@ They defined the hazard for an individual in $A$ as the probability that he or s
151151
152152
$$
153153
\text{Pr}(\text{yes}|A)\times \text{Pr}(A|\text{yes})+\text{Pr}(\text{no}|A)\times \text{Pr}(A|\text{no})
154-
$$ (eq:seven-a)
154+
$$ (eq:util-rand-seven-a)
155155
156156
Similarly, the hazard for an individual who does not belong to $A$ would be
157157
158158
$$
159159
\text{Pr}(\text{yes}|A^{'})\times \text{Pr}(A|\text{yes})+\text{Pr}(\text{no}|A^{'}) \times \text{Pr}(A|\text{no})
160-
$$ (eq:seven-b)
160+
$$ (eq:util-rand-seven-b)
161161
162162
Greenberg et al. (1977) also considered an alternative related measure of hazard that "is likely to be closer to the actual concern felt by a respondent."
163163
164164
The "limited hazard" for an individual in $A$ and $A^{'}$ is
165165
166166
$$
167167
\text{Pr}(\text{yes}|A)\times \text{Pr}(A|\text{yes})
168-
$$ (eq:eight-a)
168+
$$ (eq:util-rand-eight-a)
169169
170170
and
171171
172172
$$
173173
\text{Pr}(\text{yes}|A^{'})\times \text{Pr}(A|\text{yes})
174-
$$ (eq:eight-b)
174+
$$ (eq:util-rand-eight-b)
175175
176176
This measure is just the first term in $(7)$, i.e., the probability that an individual answers "yes" and is perceived to belong to A.
177177
@@ -210,28 +210,28 @@ Then there is an $r_i$ such that
210210
211211
$$
212212
\frac{\partial U_i\left(\text{Pr}(A|r_i),\phi_i\right) }{\partial \text{Pr}(A|r_i)} <0, \text{ for } \phi_i \in \left\{\text{truth},\text{lie}\right\}
213-
$$ (eq:nine-a)
213+
$$ (eq:util-rand-nine-a)
214214
215215
and
216216
217217
$$
218218
U_i\left(\text{Pr}(A|r_i),\text{truth}\right)>U_i\left(\text{Pr}(A|r_i),\text{lie}\right) , \text{ for } \text{Pr}(A|r_i) \in [0,1]
219-
$$ (eq:nine-b)
219+
$$ (eq:util-rand-nine-b)
220220
221221
Suppose now that correct answer for individual $i$ is "yes".
222222
223223
Individual $i$ would choose to answer truthfully if
224224
225225
$$
226226
U_i\left(\text{Pr}(A|\text{yes}),\text{truth}\right)\geq U_i\left(\text{Pr}(A|\text{no}),\text{lie}\right)
227-
$$ (eq:ten-a)
227+
$$ (eq:util-rand-ten-a)
228228
229229
230230
If the correct answer is "no," individual $i$ would volunteer the correct answer only if
231231
232232
$$
233233
U_i\left(\text{Pr}(A|\text{no}),\text{truth}\right)\geq U_i\left(\text{Pr}(A|\text{yes}),\text{lie}\right)
234-
$$ (eq:ten-b)
234+
$$ (eq:util-rand-ten-b)
235235
236236
Assume that
237237
@@ -249,15 +249,15 @@ At equality, constraint $(10.\text{a})$ determines conditional probabilities t
249249
250250
$$
251251
U_i\left(\text{Pr}(A|\text{yes}),\text{truth}\right)= U_i\left(\text{Pr}(A|\text{no}),\text{lie}\right)
252-
$$ (eq:eleven)
252+
$$ (eq:util-rand-eleven)
253253
254254
Equation $(11)$ defines a "truth border".
255255
256256
Differentiating $(11)$ with respect to the conditional probabilities shows that the truth border has a positive slope in the space of conditional probabilities:
257257
258258
$$
259259
\frac{\partial \text{Pr}(A|\text{no})}{\partial \text{Pr}(A|\text{yes})}=\frac{\frac{\partial U_i\left(\text{Pr}(A|\text{yes}),\text{truth}\right) }{\partial \text{Pr}(A|\text{yes})}}{\frac{\partial U_i\left(\text{Pr}(A|\text{no}),\text{lie}\right) }{\partial \text{Pr}(A|\text{no})}}>0
260-
$$ (eq:twelve)
260+
$$ (eq:util-rand-twelve)
261261
262262
The source of the positive relationship is:
263263
@@ -350,7 +350,7 @@ $$
350350
V(\text{Pr}(A|\text{yes}) , \text{Pr}(A|\text{no}))
351351
= &\frac{{\pi_A}^2 (1-\pi_A)^2}{n}\times \frac{1}{\text{Pr}(A|\text{yes})-\pi_A}\times \frac{1}{\pi_A-\text{Pr}(A|\text{no})}
352352
\end{aligned}
353-
$$ (eq:thirteen)
353+
$$ (eq:util-rand-thirteen)
354354
355355
where the random sample with replacement consists of $n$ individuals.
356356
@@ -360,11 +360,11 @@ The following inequalities restrict the shapes of iso-variance curves:
360360
361361
$$
362362
\frac{d \text{ Pr}(A|\text{no})}{d\text{ Pr}(A|\text{yes})}\bigg|_{\text{constant variance}}=\frac{\pi_A-\text{Pr}(A|\text{no})}{\text{Pr}(A|\text{yes})-\pi_A}>0
363-
$$ (eq:fourteen-a)
363+
$$ (eq:util-rand-fourteen-a)
364364
365365
$$
366366
\frac{d^2 \text{ Pr}(A|\text{no})}{d\text{ Pr}(A|\text{yes})^2}\bigg|_{\text{constant variance}}=- \frac{2 \left[\pi_A-\text{Pr}(A|\text{no})\right]}{\left[\text{Pr}(A|\text{yes})-\pi_A \right]^2}<0
367-
$$ (eq:fourteen-b)
367+
$$ (eq:util-rand-fourteen-b)
368368
369369
From expression $(13)$ and $(14)$ we can see that:
370370
@@ -477,7 +477,7 @@ Lanke (1976) recommends a privacy protection criterion that minimizes:
477477
478478
$$
479479
\max \left\{ \text{Pr}(A|\text{yes}) , \text{Pr}(A|\text{no}) \right\}
480-
$$ (eq:five)
480+
$$ (eq:util-rand-five-b)
481481
482482
Following Lanke's suggestion, the statistician should find the highest possible $\text{ Pr}(A|\text{yes})$ consistent with truth telling while $\text{ Pr}(A|\text{no})$ is fixed at 0. The variance is then minimized at point $X$ in Figure 3.
483483
@@ -615,27 +615,27 @@ Greenberg et al. (1977) defined the hazard for an individual in $A$ as the proba
615615
616616
$$
617617
\text{Pr}(\text{yes}|A)\times \text{Pr}(A|\text{yes})+\text{Pr}(\text{no}|A)\times \text{Pr}(A|\text{no})
618-
$$ (eq:seven-a)
618+
$$ (eq:util-rand-seven-aa)
619619
620620
The hazard for an individual who does not belong to $A$ is
621621
622622
$$
623623
\text{Pr}(\text{yes}|A^{'})\times \text{Pr}(A|\text{yes})+\text{Pr}(\text{no}|A^{'}) \times \text{Pr}(A|\text{no})
624-
$$ (eq:seven-a)
624+
$$ (eq:util-rand-seven-bb)
625625
626626
They also considered an alternative related measure of hazard that they said "is likely to be closer to the actual concern felt by a respondent."
627627
628628
Their "limited hazard" for an individual in $A$ and $A^{'}$ is
629629
630630
$$
631631
\text{Pr}(\text{yes}|A)\times \text{Pr}(A|\text{yes})
632-
$$ (eq:eight-a)
632+
$$ (eq:util-rand-eight-aa)
633633
634634
and
635635
636636
$$
637637
\text{Pr}(\text{yes}|A^{'})\times \text{Pr}(A|\text{yes})
638-
$$ (eq:eight-b)
638+
$$ (eq:util-rand-eight-bb)
639639
640640
According to Greenberg et al. (1977), a respondent commits himself or herself to answer truthfully on the basis of a probability in $(7)$ or $(8)$ **before** randomly selecting the question to be answered.
641641

0 commit comments

Comments
 (0)