Skip to content

Commit 7732ade

Browse files
committed
FIX: migrate tex to latex for pdf
1 parent ada2293 commit 7732ade

File tree

1 file changed

+50
-48
lines changed

1 file changed

+50
-48
lines changed

lectures/lagrangian_lqdp.md

Lines changed: 50 additions & 48 deletions
Original file line numberDiff line numberDiff line change
@@ -39,11 +39,11 @@ Such a problem is also sometimes called an optimal linear regulator problem.
3939

4040
A Lagrangian formulation
4141

42-
* carries insights about connections between stability and optimality
42+
* carries insights about connections between stability and optimality
4343

44-
* is the basis for fast algorithms for solving Riccati equations
44+
* is the basis for fast algorithms for solving Riccati equations
4545

46-
* opens the way to constructing solutions of dynamic systems that don't come directly from an intertemporal optimization problem
46+
* opens the way to constructing solutions of dynamic systems that don't come directly from an intertemporal optimization problem
4747

4848
A key tool in this lecture is the concept of an $n \times n$ **symplectic** matrix.
4949

@@ -78,7 +78,7 @@ $$
7878

7979
subject to $x_{t+1}=Ax_t+Bu_t$, where $x_0$ is a given initial state vector.
8080

81-
Here $x_t$ is an $(n\times 1)$ vector of state variables, $u_t$ is a $(k\times 1)$
81+
Here $x_t$ is an $(n\times 1)$ vector of state variables, $u_t$ is a $(k\times 1)$
8282
vector of controls, $R$ is a positive semidefinite symmetric matrix,
8383
$Q$ is a positive definite symmetric matrix, $A$ is an $(n\times n)$
8484
matrix, and $B$ is an $(n\times k)$ matrix.
@@ -116,8 +116,9 @@ $$
116116
or
117117
118118
$$
119-
u=-Fx,
119+
u=-Fx,
120120
$$
121+
121122
where
122123
123124
$$
@@ -139,7 +140,7 @@ But only one of them is positive definite.
139140
140141
The positive define solution is associated with the maximum of our problem.
141142
142-
It expresses the matrix $P$ as an implicit function of the matrices
143+
It expresses the matrix $P$ as an implicit function of the matrices
143144
$R,Q,A,B$.
144145
145146
Notice that the **gradient of the value function** is
@@ -168,7 +169,9 @@ where $2 \mu_{t+1}$ is a vector of Lagrange multipliers on the time $t$ transiti
168169
First-order conditions for maximization with respect to $\{u_t,x_{t+1}\}_{t=0}^\infty$ are
169170
170171
$$
171-
\eqalign{2 Q u_t &+ 2B^\prime \mu_{t+1} = 0 \ ,\ t \geq 0 \cr \mu_t &= R x_t + A^\prime \mu_{t+1}\ ,\ t\geq 1.\cr}
172+
\begin{aligned}
173+
2 Q u_t &+ 2B^\prime \mu_{t+1} = 0 \ ,\ t \geq 0 \cr \mu_t &= R x_t + A^\prime \mu_{t+1}\ ,\ t\geq 1.\cr
174+
\end{aligned}
172175
$$ (eq2)
173176
174177
Define $\mu_0$ to be a vector of shadow prices of $x_0$ and apply an envelope condition to {eq}`eq1`
@@ -183,7 +186,7 @@ which is a time $t=0 $ counterpart to the second equation of system {eq}`eq2`.
183186
An important fact is that
184187
185188
$$
186-
\mu_{t+1} = P x_{t+1}
189+
\mu_{t+1} = P x_{t+1}
187190
$$ (eqn:muPx)
188191
189192
where $P$ is a positive define matrix that solves the algebraic Riccati equation {eq}`riccati`.
@@ -196,36 +199,36 @@ corresponds to the **state** vector $x_t$.
196199
197200
It is useful to proceed with the following steps:
198201
199-
* solve the first equation of {eq}`eq2` for $u_t$ in terms of $\mu_{t+1}$.
202+
* solve the first equation of {eq}`eq2` for $u_t$ in terms of $\mu_{t+1}$.
200203
201-
* substitute the result into the law of motion $x_{t+1} = A x_t + B u_t$.
202-
203-
* arrange the resulting equation and the second equation of {eq}`eq2` into the form
204+
* substitute the result into the law of motion $x_{t+1} = A x_t + B u_t$.
205+
206+
* arrange the resulting equation and the second equation of {eq}`eq2` into the form
204207
205208
$$
206-
L\ \pmatrix{x_{t+1}\cr \mu_{t+1}\cr}\ = \ N\ \pmatrix{x_t\cr \mu_t\cr}\
209+
L\ \begin{pmatrix}x_{t+1}\cr \mu_{t+1}\cr\end{pmatrix}\ = \ N\ \begin{pmatrix}x_t\cr \mu_t\cr\end{pmatrix}\
207210
,\ t \geq 0,
208211
$$ (eq:systosolve)
209212
210213
where
211214
212215
$$
213-
L = \ \pmatrix{I & BQ^{-1} B^\prime \cr 0 & A^\prime\cr}, \quad N = \
214-
\pmatrix{A & 0\cr -R & I\cr}.
216+
L = \ \begin{pmatrix}I & BQ^{-1} B^\prime \cr 0 & A^\prime\cr\end{pmatrix}, \quad N = \
217+
\begin{pmatrix}A & 0\cr -R & I\cr\end{pmatrix}.
215218
$$
216219
217220
When $L$ is of full rank (i.e., when $A$ is of full rank), we can write
218221
system {eq}`eq:systosolve` as
219222
220223
$$
221-
\pmatrix{x_{t+1}\cr \mu_{t+1}\cr}\ = M\ \pmatrix{x_t\cr\mu_t\cr}
224+
\begin{pmatrix}x_{t+1}\cr \mu_{t+1}\cr\end{pmatrix}\ = M\ \begin{pmatrix}x_t\cr\mu_t\cr\end{pmatrix}
222225
$$ (eq4orig)
223226
224227
where
225228
226229
$$
227-
M\equiv L^{-1} N = \pmatrix{A+B Q^{-1} B^\prime A^{\prime-1}R &
228-
-B Q^{-1} B^\prime A^{\prime-1}\cr -A^{\prime -1} R & A^{\prime -1}\cr}.
230+
M\equiv L^{-1} N = \begin{pmatrix}A+B Q^{-1} B^\prime A^{\prime-1}R &
231+
-B Q^{-1} B^\prime A^{\prime-1}\cr -A^{\prime -1} R & A^{\prime -1}\cr\end{pmatrix}.
229232
$$ (Mdefn)
230233
231234
+++
@@ -236,15 +239,16 @@ $$ (Mdefn)
236239
We seek to solve the difference equation system {eq}`eq4orig` for a sequence $\{x_t\}_{t=0}^\infty$
237240
that satisfies
238241
239-
* an initial condition for $x_0$
240-
* a terminal condition $\lim_{t \rightarrow +\infty} x_t =0$
242+
* an initial condition for $x_0$
243+
* a terminal condition $\lim_{t \rightarrow +\infty} x_t =0$
241244
242245
This terminal condition reflects our desire for a **stable** solution, one that does not diverge as $t \rightarrow \infty$.
243246
244247
245248
We inherit our wish for stability of the $\{x_t\}$ sequence from a desire to maximize
246249
247-
$$ -\sum_{t=0}^\infty \bigl[ x_t ' R x_t + u_t' Q u_t \bigr],
250+
$$
251+
-\sum_{t=0}^\infty \bigl[ x_t ' R x_t + u_t' Q u_t \bigr],
248252
$$
249253
250254
which requires that $x_t' R x_t$ converge to zero as $t \rightarrow + \infty$.
@@ -258,7 +262,7 @@ To proceed, we study properties of the $(2n \times 2n)$ matrix $M$ defined in {e
258262
It helps to introduce a $(2n \times 2n)$ matrix
259263
260264
$$
261-
J= \pmatrix{0 & -I_n\cr I_n & 0\cr}.
265+
J = \begin{pmatrix}0 & -I_n\cr I_n & 0\cr\end{pmatrix}.
262266
$$
263267
264268
The rank of $J$ is $2n$.
@@ -283,11 +287,11 @@ by a **similarity transformation**.
283287
284288
For square matrices, recall that
285289
286-
* similar matrices share eigenvalues
287-
288-
* eigenvalues of the inverse of a matrix are inverses of eigenvalues of the matrix
289-
290-
* a matrix and its transpose share eigenvalues
290+
* similar matrices share eigenvalues
291+
292+
* eigenvalues of the inverse of a matrix are inverses of eigenvalues of the matrix
293+
294+
* a matrix and its transpose share eigenvalues
291295
292296
It then follows from equation {eq}`eq4` that
293297
the eigenvalues of $M$ occur in reciprocal pairs: if $\lambda$ is an
@@ -299,12 +303,12 @@ $$
299303
y_{t+1} = M y_t
300304
$$ (eq658)
301305
302-
where $y_t = \pmatrix{x_t\cr \mu_t\cr}$.
306+
where $y_t = \begin{pmatrix}x_t\cr \mu_t\cr\end{pmatrix}$.
303307
304308
Consider a **triangularization** of $M$
305309
306310
$$
307-
V^{-1} M V= \pmatrix{W_{11} & W_{12} \cr 0 & W_{22}\cr}
311+
V^{-1} M V= \begin{pmatrix}W_{11} & W_{12} \cr 0 & W_{22}\cr\end{pmatrix}
308312
$$ (eqn:triangledecomp)
309313
310314
where
@@ -329,7 +333,7 @@ A solution of equation {eq}`eq659` for arbitrary initial condition $y_0$ is
329333
evidently
330334
331335
$$
332-
y_{t} = V \left[\matrix{W^t_{11} & W_{12,t}\cr 0 & W^t_{22}\cr}\right]
336+
y_{t} = V \left[\begin{matrix}W^t_{11} & W_{12,t}\cr 0 & W^t_{22}\cr\end{matrix}\right]
333337
\ V^{-1} y_0
334338
$$ (eq6510)
335339
@@ -344,9 +348,9 @@ and where $W^t_{ii}$ is $W_{ii}$ raised to the $t$th power.
344348
Write equation {eq}`eq6510` as
345349
346350
$$
347-
\pmatrix{y^\ast_{1t}\cr y^\ast_{2t}\cr}\ =\ \left[\matrix{W^t_{11} &
348-
W_{12, t}\cr 0 & W^t_{22}\cr}\right]\quad \pmatrix{y^\ast_{10}\cr
349-
y^\ast_{20}\cr}
351+
\begin{pmatrix}y^\ast_{1t}\cr y^\ast_{2t}\cr\end{pmatrix}\ =\ \left[\begin{matrix} W^t_{11} &
352+
W_{12, t}\cr 0 & W^t_{22}\cr\end{matrix}\right]\quad \begin{pmatrix}y^\ast_{10}\cr
353+
y^\ast_{20}\cr\end{pmatrix}
350354
$$
351355
352356
where $y^\ast_t = V^{-1} y_t$, and in particular where
@@ -385,7 +389,7 @@ But notice that because $(V^{21}\ V^{22})$ is the second row block of
385389
the inverse of $V,$ it follows that
386390
387391
$$
388-
(V^{21} \ V^{22})\quad \pmatrix{V_{11}\cr V_{21}\cr} = 0
392+
(V^{21} \ V^{22})\quad \begin{pmatrix}V_{11}\cr V_{21}\cr\end{pmatrix} = 0
389393
$$
390394
391395
which implies
@@ -514,8 +518,8 @@ eigvals
514518
515519
When we apply Schur decomposition such that $M=V W V^{-1}$, we want
516520
517-
* the upper left block of $W$, $W_{11}$, to have all of its eigenvalues less than 1 in modulus, and
518-
* the lower right block $W_{22}$ to have eigenvalues that exceed 1 in modulus.
521+
* the upper left block of $W$, $W_{11}$, to have all of its eigenvalues less than 1 in modulus, and
522+
* the lower right block $W_{22}$ to have eigenvalues that exceed 1 in modulus.
519523
520524
To get what we want, let's define a sorting function that tells `scipy.schur` to sort the corresponding eigenvalues with modulus smaller than 1 to the upper left.
521525
@@ -786,7 +790,9 @@ First-order conditions for maximization with respect
786790
to $\{u_t,x_{t+1}\}_{t=0}^\infty$ are
787791
788792
$$
789-
\eqalign{2 Q u_t &+ 2 \beta B^\prime \mu_{t+1} = 0 \ ,\ t \geq 0 \cr \mu_t &= R x_t + \beta A^\prime \mu_{t+1}\ ,\ t\geq 1.\cr}
793+
\begin{aligned}
794+
2 Q u_t &+ 2 \beta B^\prime \mu_{t+1} = 0 \ ,\ t \geq 0 \cr \mu_t &= R x_t + \beta A^\prime \mu_{t+1}\ ,\ t\geq 1.\cr
795+
\end{aligned}
790796
$$ (eq662)
791797
792798
Define $2 \mu_0$ to be the vector of shadow prices of $x_0$ and apply an envelope condition to
@@ -802,12 +808,12 @@ Proceeding as we did above with the undiscounted system {eq}`eq2`, we can rear
802808
system
803809
804810
$$
805-
\left[\matrix{ I & \beta B Q^{-1} B' \cr
806-
0 & \beta A' }\right]
807-
\left[\matrix{ x_{t+1} \cr \mu_{t+1} }\right] =
808-
\left[\matrix{ A & 0 \cr
809-
- R & I }\right]
810-
\left[\matrix{ x_t \cr \mu_t }\right]
811+
\left[\begin{matrix} I & \beta B Q^{-1} B' \cr
812+
0 & \beta A' \end{matrix}\right]
813+
\left[\begin{matrix} x_{t+1} \cr \mu_{t+1} \end{matrix}\right] =
814+
\left[\begin{matrix} A & 0 \cr
815+
- R & I \end{matrix}\right]
816+
\left[\begin{matrix} x_t \cr \mu_t \end{matrix}\right]
811817
$$ (eq663)
812818
813819
which in the special case that $\beta = 1$ agrees with equation {eq}`eq2`, as expected.
@@ -889,8 +895,4 @@ $$ (eq667)
889895
890896
where we must require that $F$ obeys equation {eq}`eqn:optimalFformula`.
891897
892-
Equations {eq}`eq666` and {eq}`eq667` provide different perspectives on the optimal value function.
893-
894-
```{code-cell} ipython3
895-
896-
```
898+
Equations {eq}`eq666` and {eq}`eq667` provide different perspectives on the optimal value function.

0 commit comments

Comments
 (0)