Skip to content

Commit 44a8db0

Browse files
authored
fix PDF (#241)
1 parent 07b3a97 commit 44a8db0

File tree

1 file changed

+26
-15
lines changed

1 file changed

+26
-15
lines changed

lectures/svd_intro.md

Lines changed: 26 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -82,10 +82,12 @@ $$
8282

8383
where
8484

85-
\begin{align*}
85+
$$
86+
\begin{aligned}
8687
UU^T & = I & \quad U^T U = I \cr
8788
VV^T & = I & \quad V^T V = I
88-
\end{align*}
89+
\end{aligned}
90+
$$
8991

9092
where
9193

@@ -123,29 +125,34 @@ You can read about reduced and full SVD here
123125

124126
For a full SVD,
125127

126-
\begin{align*}
128+
$$
129+
\begin{aligned}
127130
UU^T & = I & \quad U^T U = I \cr
128131
VV^T & = I & \quad V^T V = I
129-
\end{align*}
132+
\end{aligned}
133+
$$
130134

131135
But these properties don't hold for a **reduced** SVD.
132136

133137
Which properties hold depend on whether we are in a **tall-skinny** case or a **short-fat** case.
134138

135139
* In a **tall-skinny** case in which $m > > n$, for a **reduced** SVD
136140

137-
138-
\begin{align*}
141+
$$
142+
\begin{aligned}
139143
UU^T & \neq I & \quad U^T U = I \cr
140144
VV^T & = I & \quad V^T V = I
141-
\end{align*}
145+
\end{aligned}
146+
$$
142147

143148
* In a **short-fat** case in which $m < < n$, for a **reduced** SVD
144149

145-
\begin{align*}
150+
$$
151+
\begin{aligned}
146152
UU^T & = I & \quad U^T U = I \cr
147153
VV^T & = I & \quad V^T V \neq I
148-
\end{align*}
154+
\end{aligned}
155+
$$
149156

150157
When we study Dynamic Mode Decomposition below, we shall want to remember this caveat because sometimes we'll be using reduced SVD's to compute key objects.
151158

@@ -262,10 +269,12 @@ $$
262269

263270
where
264271

265-
\begin{align*}
272+
$$
273+
\begin{aligned}
266274
S & = U\Sigma U^T \cr
267275
Q & = U V^T
268-
\end{align*}
276+
\end{aligned}
277+
$$
269278

270279
and $S$ is evidently a symmetric matrix and $Q$ is an orthogonal matrix.
271280

@@ -439,11 +448,11 @@ $$
439448
Compute:
440449
441450
$$
442-
\begin{align}
451+
\begin{aligned}
443452
XX^T&=U\Sigma V^TV\Sigma^T U^T\cr
444453
&\equiv U\Sigma\Sigma^TU^T\cr
445454
&\equiv U\Lambda U^T
446-
\end{align}
455+
\end{aligned}
447456
$$ (eq:XXcompare)
448457
449458
Compare representation {eq}`eq:XXcompare` with equation {eq}`eq:XXo` above.
@@ -453,10 +462,12 @@ eigenvectors of $XX^T$ and $\Sigma \Sigma^T$ is the matrix $\Lambda$ of eigenval
453462
454463
Second, let's compute
455464
456-
\begin{align*}
465+
$$
466+
\begin{aligned}
457467
X^TX &=V\Sigma^T U^TU\Sigma V^T\\
458468
&=V\Sigma^T{\Sigma}V^T
459-
\end{align*}
469+
\end{aligned}
470+
$$
460471
461472
462473

0 commit comments

Comments
 (0)