Skip to content

Commit 2bb6e08

Browse files
committed
fix string formatting warning
1 parent 9418da8 commit 2bb6e08

File tree

1 file changed

+4
-9
lines changed

1 file changed

+4
-9
lines changed

lectures/cass_fiscal.md

Lines changed: 4 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ jupytext:
44
extension: .md
55
format_name: myst
66
format_version: 0.13
7-
jupytext_version: 1.16.6
7+
jupytext_version: 1.16.7
88
kernelspec:
99
display_name: Python 3 (ipykernel)
1010
language: python
@@ -750,7 +750,7 @@ def plot_results(solution, k_ss, c_ss, shocks, shock_param,
750750
R_bar_path = compute_R_bar_path(shocks, k_path, model, S)
751751
752752
axes[2].plot(R_bar_path[:T], linestyle=linestyle, label=label)
753-
axes[2].set_title('$\overline{R}$')
753+
axes[2].set_title(r'$\overline{R}$')
754754
axes[2].axhline(1 / model.β, linestyle='--', color='black')
755755
756756
η_path = compute_η_path(k_path, model, S=T)
@@ -1041,7 +1041,7 @@ Indeed, {eq}`eq:euler_house` or {eq}`eq:diff_second` indicates that a foreseen i
10411041
crease in $\tau_{ct}$ (i.e., a decrease in $(1+\tau_{ct})$
10421042
$(1+\tau_{ct+1})$) operates like an increase in $\tau_{kt}$.
10431043
1044-
The following figure portrays the response to a foreseen increase in the consumption tax $\tau_c$.
1044+
The following figure portrays the response to a foreseen increase in the consumption tax $\tau_c$.
10451045
10461046
```{code-cell} ipython3
10471047
shocks = {
@@ -1101,7 +1101,6 @@ The figure shows that:
11011101
- Transition dynamics push $k_t$ (capital stock) toward a new, lower steady-state level. In the new steady state:
11021102
- Consumption is lower due to reduced output from the lower capital stock.
11031103
- Smoother consumption paths occur when $\gamma = 2$ than when $\gamma = 0.2$.
1104-
11051104
11061105
+++
11071106
@@ -1111,8 +1110,6 @@ foreseen one-time change in a policy variable (a "pulse").
11111110
11121111
**Experiment 4: Foreseen one-time increase in $g$ from 0.2 to 0.4 in period 10, after which $g$ returns to 0.2 forever**
11131112
1114-
1115-
11161113
```{code-cell} ipython3
11171114
g_path = np.repeat(0.2, S + 1)
11181115
g_path[10] = 0.4
@@ -1136,6 +1133,7 @@ The figure indicates how:
11361133
- Before $t = 10$, capital accumulates as interest rate changes induce households to prepare for the anticipated increase in government spending.
11371134
- At $t = 10$, the capital stock sharply decreases as the government consumes part of it.
11381135
- $\bar{R}$ jumps above its steady-state value due to the capital reduction and then gradually declines toward its steady-state level.
1136+
11391137
+++
11401138
11411139
### Method 2: Residual Minimization
@@ -1386,6 +1384,3 @@ shocks = {
13861384
13871385
experiment_model(shocks, S, model, run_min, plot_results, 'g')
13881386
```
1389-
1390-
```{solution-end}
1391-
```

0 commit comments

Comments
 (0)