Skip to content

Commit 0155ba5

Browse files
Tom's July 27 edit of prob_matrix.md lecture
1 parent a4d4aaa commit 0155ba5

File tree

1 file changed

+14
-14
lines changed

1 file changed

+14
-14
lines changed

lectures/prob_matrix.md

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -84,11 +84,11 @@ where ${\mathcal G}$ is the subset of $\Omega$ for which $X(\omega) \in A$.
8484
We call this the induced probability distribution of random variable $X$.
8585
8686
87-
## Digression: What Does Probability Mean?
87+
## What Does Probability Mean?
8888
8989
Before diving in, we'll say a few words about what probability theory means and how it connects to statistics.
9090
91-
These are topics that are also touched on in the quantecon lectures <https://python.quantecon.org/prob_meaning.html> and <https://python.quantecon.org/navy_captain.html>.
91+
We also touch on these topics in the quantecon lectures <https://python.quantecon.org/prob_meaning.html> and <https://python.quantecon.org/navy_captain.html>.
9292
9393
For much of this lecture we'll be discussing fixed "population" probabilities.
9494
@@ -248,10 +248,10 @@ where $\theta $ is a vector of parameters that is of much smaller dimension than
248248
**Remarks:**
249249
250250
- The concept of **parameter** is intimately related to the notion of **sufficient statistic**.
251-
- Sufficient statistic are nonlinear function of a data set.
252-
- Sufficient statistics are designed to summarize all **information** about the parameters that is contained in the big data set.
253-
- They are important tools that AI uses to reduce the size of a **big data** set
254-
- R. A. Fisher provided a sharp definition of **information** -- see <https://en.wikipedia.org/wiki/Fisher_information>
251+
- Sufficient statistics are nonlinear functions of a data set.
252+
- Sufficient statistics are designed to summarize all **information** about parameters that is contained in a data set.
253+
- They are important tools that AI uses to summarize a **big data** set
254+
- R. A. Fisher provided a rigorous definition of **information** -- see <https://en.wikipedia.org/wiki/Fisher_information>
255255
256256
257257
@@ -294,7 +294,7 @@ To begin, we restrict ourselves to two discrete random variables.
294294
Let $X,Y$ be two discrete random variables that take values:
295295
296296
$$
297-
X\in\{0,\ldots,J-1\}
297+
X\in\{0,\ldots,I-1\}
298298
$$
299299
300300
$$
@@ -304,7 +304,7 @@ $$
304304
Then their **joint distribution** is described by a matrix
305305
306306
$$
307-
F_{I\times J}=[f_{ij}]_{i\in\{0,\ldots,J-1\}, j\in\{0,\ldots,J-1\}}
307+
F_{I\times J}=[f_{ij}]_{i\in\{0,\ldots,I-1\}, j\in\{0,\ldots,J-1\}}
308308
$$
309309
310310
whose elements are
@@ -331,7 +331,7 @@ $$
331331
\textrm{Prob}\{Y=j\}= \sum_{i=0}^{I-1}f_{ij} = \nu_j, \quad j=0,\ldots,J-1
332332
$$
333333
334-
For example, let the joint distribution over $(X,Y)$ be
334+
For example, let a joint distribution over $(X,Y)$ be
335335
336336
$$
337337
F = \left[
@@ -342,7 +342,7 @@ F = \left[
342342
\right]
343343
$$ (eq:example101discrete)
344344
345-
Then marginal distributions are:
345+
The implied marginal distributions are:
346346
347347
$$
348348
\begin{aligned}
@@ -405,7 +405,7 @@ $$
405405
Random variables X and Y are statistically **independent** if
406406
407407
$$
408-
\textrm{Prob}\{X=i,Y=j\}={f_ig_i}
408+
\textrm{Prob}\{X=i,Y=j\}={f_ig_j}
409409
$$
410410
411411
where
@@ -421,8 +421,8 @@ Conditional distributions are
421421
422422
$$
423423
\begin{aligned}
424-
\textrm{Prob}\{X=i|Y=j\} & =\frac{f_ig_i}{\sum_{i}f_ig_j}=\frac{f_ig_i}{g_i}=f_i \\
425-
\textrm{Prob}\{Y=j|X=i\} & =\frac{f_ig_i}{\sum_{j}f_ig_j}=\frac{f_ig_i}{f_i}=g_i
424+
\textrm{Prob}\{X=i|Y=j\} & =\frac{f_ig_j}{\sum_{i}f_ig_j}=\frac{f_ig_j}{g_i}=f_i \\
425+
\textrm{Prob}\{Y=j|X=i\} & =\frac{f_ig_j}{\sum_{j}f_ig_j}=\frac{f_ig_j}{f_i}=g_j
426426
\end{aligned}
427427
$$
428428
@@ -449,7 +449,7 @@ $$
449449
$$
450450
451451
452-
## Classic Trick for Generating Random Numbers
452+
## Generating Random Numbers
453453
454454
Suppose we have at our disposal a pseudo random number that draws a uniform random variable, i.e., one with probability distribution
455455

0 commit comments

Comments
 (0)