|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "ccd1c797-db85-4293-8436-0cd442d1d9ae", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Code for Graphviz Plots " |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": 1, |
| 14 | + "id": "6f6a377d-1fc8-4f2a-8e92-b550a7c92828", |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [ |
| 17 | + { |
| 18 | + "name": "stdout", |
| 19 | + "output_type": "stream", |
| 20 | + "text": [ |
| 21 | + "Requirement already satisfied: graphviz in /Users/humphreyyang/anaconda3/envs/quantecon/lib/python3.9/site-packages (0.20.1)\n" |
| 22 | + ] |
| 23 | + } |
| 24 | + ], |
| 25 | + "source": [ |
| 26 | + "!pip install graphviz" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "markdown", |
| 31 | + "id": "ad403a5a-868c-45ed-a360-a81aee9cfd38", |
| 32 | + "metadata": {}, |
| 33 | + "source": [ |
| 34 | + "```{admonition} graphviz\n", |
| 35 | + ":class: warning\n", |
| 36 | + "If you are running this lecture locally it requires [graphviz](https://www.graphviz.org)\n", |
| 37 | + "to be installed on your computer. Installation instructions for graphviz can be found\n", |
| 38 | + "[here](https://www.graphviz.org/download/) \n", |
| 39 | + "```" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": 2, |
| 45 | + "id": "428161a2-e0d5-402e-bf16-1d1e460a30e7", |
| 46 | + "metadata": {}, |
| 47 | + "outputs": [], |
| 48 | + "source": [ |
| 49 | + "from graphviz import Digraph\n" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "markdown", |
| 54 | + "id": "75d07327-0fcc-41f1-8d36-b8b8d4eb1060", |
| 55 | + "metadata": {}, |
| 56 | + "source": [ |
| 57 | + "## Lake Model" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "code", |
| 62 | + "execution_count": 3, |
| 63 | + "id": "16e9379d-bf94-4c79-9a34-4dbc2cc41b0e", |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [ |
| 66 | + { |
| 67 | + "data": { |
| 68 | + "text/plain": [ |
| 69 | + "'../lake_model/lake_model_worker.png'" |
| 70 | + ] |
| 71 | + }, |
| 72 | + "execution_count": 3, |
| 73 | + "metadata": {}, |
| 74 | + "output_type": "execute_result" |
| 75 | + } |
| 76 | + ], |
| 77 | + "source": [ |
| 78 | + "# Create Digraph object\n", |
| 79 | + "G = Digraph(format='png')\n", |
| 80 | + "G.attr(rankdir='LR')\n", |
| 81 | + "\n", |
| 82 | + "# Add nodes\n", |
| 83 | + "G.attr('node', shape='circle')\n", |
| 84 | + "G.node('1', 'New entrants', color='blue')\n", |
| 85 | + "G.node('2', 'Unemployed')\n", |
| 86 | + "G.node('3', 'Employed')\n", |
| 87 | + "\n", |
| 88 | + "# Add edges\n", |
| 89 | + "G.edge('1', '2', label='b')\n", |
| 90 | + "G.edge('2', '3', label='λ(1-d)')\n", |
| 91 | + "G.edge('3', '2', label='α(1-d)')\n", |
| 92 | + "G.edge('2', '2', label='(1-λ)(1-d)')\n", |
| 93 | + "G.edge('3', '3', label='(1-α)(1-d)')\n", |
| 94 | + "\n", |
| 95 | + "# Save Plot\n", |
| 96 | + "G.render(filename='../lake_model/lake_model_worker')" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "markdown", |
| 101 | + "id": "194ca10b-dd02-4210-adbc-c2bb8b699d45", |
| 102 | + "metadata": {}, |
| 103 | + "source": [ |
| 104 | + "## Markov Chains I\n", |
| 105 | + "\n", |
| 106 | + "### Example 1\n", |
| 107 | + "\n", |
| 108 | + "Hamilton on US unemployment data" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "code", |
| 113 | + "execution_count": 6, |
| 114 | + "id": "75e86ad6-d11c-4c36-920d-cbab0e3d97d2", |
| 115 | + "metadata": {}, |
| 116 | + "outputs": [ |
| 117 | + { |
| 118 | + "data": { |
| 119 | + "text/plain": [ |
| 120 | + "'../markov_chains_I/Hamilton.png'" |
| 121 | + ] |
| 122 | + }, |
| 123 | + "execution_count": 6, |
| 124 | + "metadata": {}, |
| 125 | + "output_type": "execute_result" |
| 126 | + } |
| 127 | + ], |
| 128 | + "source": [ |
| 129 | + "dot = Digraph(format='png')\n", |
| 130 | + "dot.attr(rankdir='LR')\n", |
| 131 | + "dot.node(\"ng\")\n", |
| 132 | + "dot.node(\"mr\")\n", |
| 133 | + "dot.node(\"sr\")\n", |
| 134 | + "\n", |
| 135 | + "dot.edge(\"ng\", \"ng\", label=\"0.971\")\n", |
| 136 | + "dot.edge(\"ng\", \"mr\", label=\"0.029\")\n", |
| 137 | + "dot.edge(\"mr\", \"ng\", label=\"0.145\")\n", |
| 138 | + "\n", |
| 139 | + "dot.edge(\"mr\", \"mr\", label=\"0.778\")\n", |
| 140 | + "dot.edge(\"mr\", \"sr\", label=\"0.077\")\n", |
| 141 | + "dot.edge(\"sr\", \"mr\", label=\"0.508\")\n", |
| 142 | + "\n", |
| 143 | + "dot.edge(\"sr\", \"sr\", label=\"0.492\")\n", |
| 144 | + "dot\n", |
| 145 | + "\n", |
| 146 | + "dot.render(filename='../markov_chains_I/Hamilton')" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "markdown", |
| 151 | + "id": "1b7b4b45-f6a4-495d-9115-638aafe9acd8", |
| 152 | + "metadata": {}, |
| 153 | + "source": [ |
| 154 | + "### Exercise 1\n", |
| 155 | + "\n", |
| 156 | + "Solution 2:" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "code", |
| 161 | + "execution_count": 5, |
| 162 | + "id": "46c4612f-3f8b-4c83-b02a-81fe67545e8f", |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [ |
| 165 | + { |
| 166 | + "data": { |
| 167 | + "text/plain": [ |
| 168 | + "'../markov_chains_I/Temple.png'" |
| 169 | + ] |
| 170 | + }, |
| 171 | + "execution_count": 5, |
| 172 | + "metadata": {}, |
| 173 | + "output_type": "execute_result" |
| 174 | + } |
| 175 | + ], |
| 176 | + "source": [ |
| 177 | + "dot = Digraph(format='png')\n", |
| 178 | + "dot.attr(rankdir='LR')\n", |
| 179 | + "dot.node(\"Growth\")\n", |
| 180 | + "dot.node(\"Stagnation\")\n", |
| 181 | + "dot.node(\"Collapse\")\n", |
| 182 | + "\n", |
| 183 | + "dot.edge(\"Growth\", \"Growth\", label=\"0.68\")\n", |
| 184 | + "dot.edge(\"Growth\", \"Stagnation\", label=\"0.12\")\n", |
| 185 | + "dot.edge(\"Growth\", \"Collapse\", label=\"0.20\")\n", |
| 186 | + "\n", |
| 187 | + "dot.edge(\"Stagnation\", \"Stagnation\", label=\"0.24\")\n", |
| 188 | + "dot.edge(\"Stagnation\", \"Growth\", label=\"0.50\")\n", |
| 189 | + "dot.edge(\"Stagnation\", \"Collapse\", label=\"0.26\")\n", |
| 190 | + "\n", |
| 191 | + "dot.edge(\"Collapse\", \"Collapse\", label=\"0.46\")\n", |
| 192 | + "dot.edge(\"Collapse\", \"Stagnation\", label=\"0.18\")\n", |
| 193 | + "dot.edge(\"Collapse\", \"Growth\", label=\"0.36\")\n", |
| 194 | + "\n", |
| 195 | + "dot\n", |
| 196 | + "\n", |
| 197 | + "dot.render(filename='../markov_chains_I/Temple')" |
| 198 | + ] |
| 199 | + } |
| 200 | + ], |
| 201 | + "metadata": { |
| 202 | + "kernelspec": { |
| 203 | + "display_name": "Python 3 (ipykernel)", |
| 204 | + "language": "python", |
| 205 | + "name": "python3" |
| 206 | + }, |
| 207 | + "language_info": { |
| 208 | + "codemirror_mode": { |
| 209 | + "name": "ipython", |
| 210 | + "version": 3 |
| 211 | + }, |
| 212 | + "file_extension": ".py", |
| 213 | + "mimetype": "text/x-python", |
| 214 | + "name": "python", |
| 215 | + "nbconvert_exporter": "python", |
| 216 | + "pygments_lexer": "ipython3", |
| 217 | + "version": "3.9.16" |
| 218 | + } |
| 219 | + }, |
| 220 | + "nbformat": 4, |
| 221 | + "nbformat_minor": 5 |
| 222 | +} |
0 commit comments