diff --git a/.github/workflows/basic.yml b/.github/workflows/basic.yml index 773cb928..cb9cb4ee 100644 --- a/.github/workflows/basic.yml +++ b/.github/workflows/basic.yml @@ -41,7 +41,7 @@ jobs: conda config --add channels conda-forge conda config --set channel_priority strict conda info - conda install python==3.9 pytorch==1.13.0 pytest numpy -y + conda install python==3.9 pytorch==1.13.0 pytest numpy hypothesis -y conda list conda config --show-sources # conda config --show diff --git a/torch_np/__init__.py b/torch_np/__init__.py index a4900d44..f9c9a8eb 100644 --- a/torch_np/__init__.py +++ b/torch_np/__init__.py @@ -14,6 +14,8 @@ nan = float("nan") +alltrue = all + #### HACK HACK HACK #### import torch diff --git a/torch_np/testing/__init__.py b/torch_np/testing/__init__.py index 26c94ca9..7ca601c2 100644 --- a/torch_np/testing/__init__.py +++ b/torch_np/testing/__init__.py @@ -3,9 +3,12 @@ assert_, assert_allclose, assert_almost_equal, + assert_array_almost_equal, assert_array_equal, assert_equal, + assert_raises_regex, assert_warns, + suppress_warnings, ) # from .testing import assert_allclose # FIXME diff --git a/torch_np/tests/numpy_tests/lib/test_function_base.py b/torch_np/tests/numpy_tests/lib/test_function_base.py new file mode 100644 index 00000000..f9a3d608 --- /dev/null +++ b/torch_np/tests/numpy_tests/lib/test_function_base.py @@ -0,0 +1,3985 @@ +import operator +import warnings +import sys +import decimal +from fractions import Fraction +import math +import pytest +import hypothesis +from hypothesis.extra.numpy import arrays +import hypothesis.strategies as st + + +import torch_np as np +# from numpy import ma +from torch_np.testing import (assert_, assert_equal, assert_array_equal, assert_almost_equal, + assert_array_almost_equal, assert_allclose, # IS_PYPY, + assert_warns, assert_raises_regex, suppress_warnings, # HAS_REFCOUNT, IS_WASM + ) +from pytest import raises as assert_raises + +HAS_REFCOUNT = True +IS_WASM = False +IS_PYPY = False + +import numpy.lib.function_base as nfb # FIXME: remove +from numpy.random import rand # FIXME: random.rand + + +# FIXME: make from torch_np +from numpy.lib import ( + add_newdoc_ufunc, angle, average, bartlett, blackman, corrcoef, cov, + delete, diff, digitize, extract, flipud, gradient, hamming, hanning, + i0, insert, interp, kaiser, meshgrid, msort, piecewise, place, rot90, + select, setxor1d, sinc, trapz, trim_zeros, unwrap, unique, vectorize + ) +from torch_np._util import normalize_axis_tuple + + +def get_mat(n): + data = np.arange(n) + data = np.add.outer(data, data) + return data + + +def _make_complex(real, imag): + """ + Like real + 1j * imag, but behaves as expected when imag contains non-finite + values + """ + ret = np.zeros(np.broadcast(real, imag).shape, np.complex_) + ret.real = real + ret.imag = imag + return ret + + +@pytest.mark.xfail(reason='TODO: implement') +class TestRot90: + def test_basic(self): + assert_raises(ValueError, rot90, np.ones(4)) + assert_raises(ValueError, rot90, np.ones((2,2,2)), axes=(0,1,2)) + assert_raises(ValueError, rot90, np.ones((2,2)), axes=(0,2)) + assert_raises(ValueError, rot90, np.ones((2,2)), axes=(1,1)) + assert_raises(ValueError, rot90, np.ones((2,2,2)), axes=(-2,1)) + + a = [[0, 1, 2], + [3, 4, 5]] + b1 = [[2, 5], + [1, 4], + [0, 3]] + b2 = [[5, 4, 3], + [2, 1, 0]] + b3 = [[3, 0], + [4, 1], + [5, 2]] + b4 = [[0, 1, 2], + [3, 4, 5]] + + for k in range(-3, 13, 4): + assert_equal(rot90(a, k=k), b1) + for k in range(-2, 13, 4): + assert_equal(rot90(a, k=k), b2) + for k in range(-1, 13, 4): + assert_equal(rot90(a, k=k), b3) + for k in range(0, 13, 4): + assert_equal(rot90(a, k=k), b4) + + assert_equal(rot90(rot90(a, axes=(0,1)), axes=(1,0)), a) + assert_equal(rot90(a, k=1, axes=(1,0)), rot90(a, k=-1, axes=(0,1))) + + def test_axes(self): + a = np.ones((50, 40, 3)) + assert_equal(rot90(a).shape, (40, 50, 3)) + assert_equal(rot90(a, axes=(0,2)), rot90(a, axes=(0,-1))) + assert_equal(rot90(a, axes=(1,2)), rot90(a, axes=(-2,-1))) + + def test_rotation_axes(self): + a = np.arange(8).reshape((2,2,2)) + + a_rot90_01 = [[[2, 3], + [6, 7]], + [[0, 1], + [4, 5]]] + a_rot90_12 = [[[1, 3], + [0, 2]], + [[5, 7], + [4, 6]]] + a_rot90_20 = [[[4, 0], + [6, 2]], + [[5, 1], + [7, 3]]] + a_rot90_10 = [[[4, 5], + [0, 1]], + [[6, 7], + [2, 3]]] + + assert_equal(rot90(a, axes=(0, 1)), a_rot90_01) + assert_equal(rot90(a, axes=(1, 0)), a_rot90_10) + assert_equal(rot90(a, axes=(1, 2)), a_rot90_12) + + for k in range(1,5): + assert_equal(rot90(a, k=k, axes=(2, 0)), + rot90(a_rot90_20, k=k-1, axes=(2, 0))) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestFlip: + + def test_axes(self): + assert_raises(np.AxisError, np.flip, np.ones(4), axis=1) + assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=2) + assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=-3) + assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=(0, 3)) + + def test_basic_lr(self): + a = get_mat(4) + b = a[:, ::-1] + assert_equal(np.flip(a, 1), b) + a = [[0, 1, 2], + [3, 4, 5]] + b = [[2, 1, 0], + [5, 4, 3]] + assert_equal(np.flip(a, 1), b) + + def test_basic_ud(self): + a = get_mat(4) + b = a[::-1, :] + assert_equal(np.flip(a, 0), b) + a = [[0, 1, 2], + [3, 4, 5]] + b = [[3, 4, 5], + [0, 1, 2]] + assert_equal(np.flip(a, 0), b) + + def test_3d_swap_axis0(self): + a = np.array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + + b = np.array([[[4, 5], + [6, 7]], + [[0, 1], + [2, 3]]]) + + assert_equal(np.flip(a, 0), b) + + def test_3d_swap_axis1(self): + a = np.array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + + b = np.array([[[2, 3], + [0, 1]], + [[6, 7], + [4, 5]]]) + + assert_equal(np.flip(a, 1), b) + + def test_3d_swap_axis2(self): + a = np.array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + + b = np.array([[[1, 0], + [3, 2]], + [[5, 4], + [7, 6]]]) + + assert_equal(np.flip(a, 2), b) + + def test_4d(self): + a = np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5) + for i in range(a.ndim): + assert_equal(np.flip(a, i), + np.flipud(a.swapaxes(0, i)).swapaxes(i, 0)) + + def test_default_axis(self): + a = np.array([[1, 2, 3], + [4, 5, 6]]) + b = np.array([[6, 5, 4], + [3, 2, 1]]) + assert_equal(np.flip(a), b) + + def test_multiple_axes(self): + a = np.array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + + assert_equal(np.flip(a, axis=()), a) + + b = np.array([[[5, 4], + [7, 6]], + [[1, 0], + [3, 2]]]) + + assert_equal(np.flip(a, axis=(0, 2)), b) + + c = np.array([[[3, 2], + [1, 0]], + [[7, 6], + [5, 4]]]) + + assert_equal(np.flip(a, axis=(1, 2)), c) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestAny: + + def test_basic(self): + y1 = [0, 0, 1, 0] + y2 = [0, 0, 0, 0] + y3 = [1, 0, 1, 0] + assert_(np.any(y1)) + assert_(np.any(y3)) + assert_(not np.any(y2)) + + def test_nd(self): + y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]] + assert_(np.any(y1)) + assert_array_equal(np.sometrue(y1, axis=0), [1, 1, 0]) + assert_array_equal(np.sometrue(y1, axis=1), [0, 1, 1]) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestAll: + + def test_basic(self): + y1 = [0, 1, 1, 0] + y2 = [0, 0, 0, 0] + y3 = [1, 1, 1, 1] + assert_(not np.all(y1)) + assert_(np.all(y3)) + assert_(not np.all(y2)) + assert_(np.all(~np.array(y2))) + + def test_nd(self): + y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]] + assert_(not np.all(y1)) + assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1]) + assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1]) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestCopy: + + def test_basic(self): + a = np.array([[1, 2], [3, 4]]) + a_copy = np.copy(a) + assert_array_equal(a, a_copy) + a_copy[0, 0] = 10 + assert_equal(a[0, 0], 1) + assert_equal(a_copy[0, 0], 10) + + def test_order(self): + # It turns out that people rely on np.copy() preserving order by + # default; changing this broke scikit-learn: + # github.com/scikit-learn/scikit-learn/commit/7842748cf777412c506a8c0ed28090711d3a3783 # noqa + a = np.array([[1, 2], [3, 4]]) + assert_(a.flags.c_contiguous) + assert_(not a.flags.f_contiguous) + a_fort = np.array([[1, 2], [3, 4]], order="F") + assert_(not a_fort.flags.c_contiguous) + assert_(a_fort.flags.f_contiguous) + a_copy = np.copy(a) + assert_(a_copy.flags.c_contiguous) + assert_(not a_copy.flags.f_contiguous) + a_fort_copy = np.copy(a_fort) + assert_(not a_fort_copy.flags.c_contiguous) + assert_(a_fort_copy.flags.f_contiguous) + + def test_subok(self): + mx = ma.ones(5) + assert_(not ma.isMaskedArray(np.copy(mx, subok=False))) + assert_(ma.isMaskedArray(np.copy(mx, subok=True))) + # Default behavior + assert_(not ma.isMaskedArray(np.copy(mx))) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestAverage: + + def test_basic(self): + y1 = np.array([1, 2, 3]) + assert_(average(y1, axis=0) == 2.) + y2 = np.array([1., 2., 3.]) + assert_(average(y2, axis=0) == 2.) + y3 = [0., 0., 0.] + assert_(average(y3, axis=0) == 0.) + + y4 = np.ones((4, 4)) + y4[0, 1] = 0 + y4[1, 0] = 2 + assert_almost_equal(y4.mean(0), average(y4, 0)) + assert_almost_equal(y4.mean(1), average(y4, 1)) + + y5 = rand(5, 5) + assert_almost_equal(y5.mean(0), average(y5, 0)) + assert_almost_equal(y5.mean(1), average(y5, 1)) + + @pytest.mark.parametrize( + 'x, axis, expected_avg, weights, expected_wavg, expected_wsum', + [([1, 2, 3], None, [2.0], [3, 4, 1], [1.75], [8.0]), + ([[1, 2, 5], [1, 6, 11]], 0, [[1.0, 4.0, 8.0]], + [1, 3], [[1.0, 5.0, 9.5]], [[4, 4, 4]])], + ) + def test_basic_keepdims(self, x, axis, expected_avg, + weights, expected_wavg, expected_wsum): + avg = np.average(x, axis=axis, keepdims=True) + assert avg.shape == np.shape(expected_avg) + assert_array_equal(avg, expected_avg) + + wavg = np.average(x, axis=axis, weights=weights, keepdims=True) + assert wavg.shape == np.shape(expected_wavg) + assert_array_equal(wavg, expected_wavg) + + wavg, wsum = np.average(x, axis=axis, weights=weights, returned=True, + keepdims=True) + assert wavg.shape == np.shape(expected_wavg) + assert_array_equal(wavg, expected_wavg) + assert wsum.shape == np.shape(expected_wsum) + assert_array_equal(wsum, expected_wsum) + + def test_weights(self): + y = np.arange(10) + w = np.arange(10) + actual = average(y, weights=w) + desired = (np.arange(10) ** 2).sum() * 1. / np.arange(10).sum() + assert_almost_equal(actual, desired) + + y1 = np.array([[1, 2, 3], [4, 5, 6]]) + w0 = [1, 2] + actual = average(y1, weights=w0, axis=0) + desired = np.array([3., 4., 5.]) + assert_almost_equal(actual, desired) + + w1 = [0, 0, 1] + actual = average(y1, weights=w1, axis=1) + desired = np.array([3., 6.]) + assert_almost_equal(actual, desired) + + # This should raise an error. Can we test for that ? + # assert_equal(average(y1, weights=w1), 9./2.) + + # 2D Case + w2 = [[0, 0, 1], [0, 0, 2]] + desired = np.array([3., 6.]) + assert_array_equal(average(y1, weights=w2, axis=1), desired) + assert_equal(average(y1, weights=w2), 5.) + + y3 = rand(5).astype(np.float32) + w3 = rand(5).astype(np.float64) + + assert_(np.average(y3, weights=w3).dtype == np.result_type(y3, w3)) + + # test weights with `keepdims=False` and `keepdims=True` + x = np.array([2, 3, 4]).reshape(3, 1) + w = np.array([4, 5, 6]).reshape(3, 1) + + actual = np.average(x, weights=w, axis=1, keepdims=False) + desired = np.array([2., 3., 4.]) + assert_array_equal(actual, desired) + + actual = np.average(x, weights=w, axis=1, keepdims=True) + desired = np.array([[2.], [3.], [4.]]) + assert_array_equal(actual, desired) + + def test_returned(self): + y = np.array([[1, 2, 3], [4, 5, 6]]) + + # No weights + avg, scl = average(y, returned=True) + assert_equal(scl, 6.) + + avg, scl = average(y, 0, returned=True) + assert_array_equal(scl, np.array([2., 2., 2.])) + + avg, scl = average(y, 1, returned=True) + assert_array_equal(scl, np.array([3., 3.])) + + # With weights + w0 = [1, 2] + avg, scl = average(y, weights=w0, axis=0, returned=True) + assert_array_equal(scl, np.array([3., 3., 3.])) + + w1 = [1, 2, 3] + avg, scl = average(y, weights=w1, axis=1, returned=True) + assert_array_equal(scl, np.array([6., 6.])) + + w2 = [[0, 0, 1], [1, 2, 3]] + avg, scl = average(y, weights=w2, axis=1, returned=True) + assert_array_equal(scl, np.array([1., 6.])) + + def test_subclasses(self): + class subclass(np.ndarray): + pass + a = np.array([[1,2],[3,4]]).view(subclass) + w = np.array([[1,2],[3,4]]).view(subclass) + + assert_equal(type(np.average(a)), subclass) + assert_equal(type(np.average(a, weights=w)), subclass) + + def test_upcasting(self): + typs = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'), + ('f4', 'f4', 'f4'), ('f4', 'f8', 'f8')] + for at, wt, rt in typs: + a = np.array([[1,2],[3,4]], dtype=at) + w = np.array([[1,2],[3,4]], dtype=wt) + assert_equal(np.average(a, weights=w).dtype, np.dtype(rt)) + + def test_object_dtype(self): + a = np.array([decimal.Decimal(x) for x in range(10)]) + w = np.array([decimal.Decimal(1) for _ in range(10)]) + w /= w.sum() + assert_almost_equal(a.mean(0), average(a, weights=w)) + + def test_average_class_without_dtype(self): + # see gh-21988 + a = np.array([Fraction(1, 5), Fraction(3, 5)]) + assert_equal(np.average(a), Fraction(2, 5)) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestSelect: + choices = [np.array([1, 2, 3]), + np.array([4, 5, 6]), + np.array([7, 8, 9])] + conditions = [np.array([False, False, False]), + np.array([False, True, False]), + np.array([False, False, True])] + + def _select(self, cond, values, default=0): + output = [] + for m in range(len(cond)): + output += [V[m] for V, C in zip(values, cond) if C[m]] or [default] + return output + + def test_basic(self): + choices = self.choices + conditions = self.conditions + assert_array_equal(select(conditions, choices, default=15), + self._select(conditions, choices, default=15)) + + assert_equal(len(choices), 3) + assert_equal(len(conditions), 3) + + def test_broadcasting(self): + conditions = [np.array(True), np.array([False, True, False])] + choices = [1, np.arange(12).reshape(4, 3)] + assert_array_equal(select(conditions, choices), np.ones((4, 3))) + # default can broadcast too: + assert_equal(select([True], [0], default=[0]).shape, (1,)) + + def test_return_dtype(self): + assert_equal(select(self.conditions, self.choices, 1j).dtype, + np.complex_) + # But the conditions need to be stronger then the scalar default + # if it is scalar. + choices = [choice.astype(np.int8) for choice in self.choices] + assert_equal(select(self.conditions, choices).dtype, np.int8) + + d = np.array([1, 2, 3, np.nan, 5, 7]) + m = np.isnan(d) + assert_equal(select([m], [d]), [0, 0, 0, np.nan, 0, 0]) + + def test_deprecated_empty(self): + assert_raises(ValueError, select, [], [], 3j) + assert_raises(ValueError, select, [], []) + + def test_non_bool_deprecation(self): + choices = self.choices + conditions = self.conditions[:] + conditions[0] = conditions[0].astype(np.int_) + assert_raises(TypeError, select, conditions, choices) + conditions[0] = conditions[0].astype(np.uint8) + assert_raises(TypeError, select, conditions, choices) + assert_raises(TypeError, select, conditions, choices) + + def test_many_arguments(self): + # This used to be limited by NPY_MAXARGS == 32 + conditions = [np.array([False])] * 100 + choices = [np.array([1])] * 100 + select(conditions, choices) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestInsert: + + def test_basic(self): + a = [1, 2, 3] + assert_equal(insert(a, 0, 1), [1, 1, 2, 3]) + assert_equal(insert(a, 3, 1), [1, 2, 3, 1]) + assert_equal(insert(a, [1, 1, 1], [1, 2, 3]), [1, 1, 2, 3, 2, 3]) + assert_equal(insert(a, 1, [1, 2, 3]), [1, 1, 2, 3, 2, 3]) + assert_equal(insert(a, [1, -1, 3], 9), [1, 9, 2, 9, 3, 9]) + assert_equal(insert(a, slice(-1, None, -1), 9), [9, 1, 9, 2, 9, 3]) + assert_equal(insert(a, [-1, 1, 3], [7, 8, 9]), [1, 8, 2, 7, 3, 9]) + b = np.array([0, 1], dtype=np.float64) + assert_equal(insert(b, 0, b[0]), [0., 0., 1.]) + assert_equal(insert(b, [], []), b) + # Bools will be treated differently in the future: + # assert_equal(insert(a, np.array([True]*4), 9), [9, 1, 9, 2, 9, 3, 9]) + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', FutureWarning) + assert_equal( + insert(a, np.array([True] * 4), 9), [1, 9, 9, 9, 9, 2, 3]) + assert_(w[0].category is FutureWarning) + + def test_multidim(self): + a = [[1, 1, 1]] + r = [[2, 2, 2], + [1, 1, 1]] + assert_equal(insert(a, 0, [1]), [1, 1, 1, 1]) + assert_equal(insert(a, 0, [2, 2, 2], axis=0), r) + assert_equal(insert(a, 0, 2, axis=0), r) + assert_equal(insert(a, 2, 2, axis=1), [[1, 1, 2, 1]]) + + a = np.array([[1, 1], [2, 2], [3, 3]]) + b = np.arange(1, 4).repeat(3).reshape(3, 3) + c = np.concatenate( + (a[:, 0:1], np.arange(1, 4).repeat(3).reshape(3, 3).T, + a[:, 1:2]), axis=1) + assert_equal(insert(a, [1], [[1], [2], [3]], axis=1), b) + assert_equal(insert(a, [1], [1, 2, 3], axis=1), c) + # scalars behave differently, in this case exactly opposite: + assert_equal(insert(a, 1, [1, 2, 3], axis=1), b) + assert_equal(insert(a, 1, [[1], [2], [3]], axis=1), c) + + a = np.arange(4).reshape(2, 2) + assert_equal(insert(a[:, :1], 1, a[:, 1], axis=1), a) + assert_equal(insert(a[:1,:], 1, a[1,:], axis=0), a) + + # negative axis value + a = np.arange(24).reshape((2, 3, 4)) + assert_equal(insert(a, 1, a[:,:, 3], axis=-1), + insert(a, 1, a[:,:, 3], axis=2)) + assert_equal(insert(a, 1, a[:, 2,:], axis=-2), + insert(a, 1, a[:, 2,:], axis=1)) + + # invalid axis value + assert_raises(np.AxisError, insert, a, 1, a[:, 2, :], axis=3) + assert_raises(np.AxisError, insert, a, 1, a[:, 2, :], axis=-4) + + # negative axis value + a = np.arange(24).reshape((2, 3, 4)) + assert_equal(insert(a, 1, a[:, :, 3], axis=-1), + insert(a, 1, a[:, :, 3], axis=2)) + assert_equal(insert(a, 1, a[:, 2, :], axis=-2), + insert(a, 1, a[:, 2, :], axis=1)) + + def test_0d(self): + a = np.array(1) + with pytest.raises(np.AxisError): + insert(a, [], 2, axis=0) + with pytest.raises(TypeError): + insert(a, [], 2, axis="nonsense") + + def test_subclass(self): + class SubClass(np.ndarray): + pass + a = np.arange(10).view(SubClass) + assert_(isinstance(np.insert(a, 0, [0]), SubClass)) + assert_(isinstance(np.insert(a, [], []), SubClass)) + assert_(isinstance(np.insert(a, [0, 1], [1, 2]), SubClass)) + assert_(isinstance(np.insert(a, slice(1, 2), [1, 2]), SubClass)) + assert_(isinstance(np.insert(a, slice(1, -2, -1), []), SubClass)) + # This is an error in the future: + a = np.array(1).view(SubClass) + assert_(isinstance(np.insert(a, 0, [0]), SubClass)) + + def test_index_array_copied(self): + x = np.array([1, 1, 1]) + np.insert([0, 1, 2], x, [3, 4, 5]) + assert_equal(x, np.array([1, 1, 1])) + + def test_structured_array(self): + a = np.array([(1, 'a'), (2, 'b'), (3, 'c')], + dtype=[('foo', 'i'), ('bar', 'a1')]) + val = (4, 'd') + b = np.insert(a, 0, val) + assert_array_equal(b[0], np.array(val, dtype=b.dtype)) + val = [(4, 'd')] * 2 + b = np.insert(a, [0, 2], val) + assert_array_equal(b[[0, 3]], np.array(val, dtype=b.dtype)) + + def test_index_floats(self): + with pytest.raises(IndexError): + np.insert([0, 1, 2], np.array([1.0, 2.0]), [10, 20]) + with pytest.raises(IndexError): + np.insert([0, 1, 2], np.array([], dtype=float), []) + + @pytest.mark.parametrize('idx', [4, -4]) + def test_index_out_of_bounds(self, idx): + with pytest.raises(IndexError, match='out of bounds'): + np.insert([0, 1, 2], [idx], [3, 4]) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestAmax: + + def test_basic(self): + a = [3, 4, 5, 10, -3, -5, 6.0] + assert_equal(np.amax(a), 10.0) + b = [[3, 6.0, 9.0], + [4, 10.0, 5.0], + [8, 3.0, 2.0]] + assert_equal(np.amax(b, axis=0), [8.0, 10.0, 9.0]) + assert_equal(np.amax(b, axis=1), [9.0, 10.0, 8.0]) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestAmin: + + def test_basic(self): + a = [3, 4, 5, 10, -3, -5, 6.0] + assert_equal(np.amin(a), -5.0) + b = [[3, 6.0, 9.0], + [4, 10.0, 5.0], + [8, 3.0, 2.0]] + assert_equal(np.amin(b, axis=0), [3.0, 3.0, 2.0]) + assert_equal(np.amin(b, axis=1), [3.0, 4.0, 2.0]) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestPtp: + + def test_basic(self): + a = np.array([3, 4, 5, 10, -3, -5, 6.0]) + assert_equal(a.ptp(axis=0), 15.0) + b = np.array([[3, 6.0, 9.0], + [4, 10.0, 5.0], + [8, 3.0, 2.0]]) + assert_equal(b.ptp(axis=0), [5.0, 7.0, 7.0]) + assert_equal(b.ptp(axis=-1), [6.0, 6.0, 6.0]) + + assert_equal(b.ptp(axis=0, keepdims=True), [[5.0, 7.0, 7.0]]) + assert_equal(b.ptp(axis=(0,1), keepdims=True), [[8.0]]) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestCumsum: + + def test_basic(self): + ba = [1, 2, 10, 11, 6, 5, 4] + ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] + for ctype in [np.int8, np.uint8, np.int16, np.int32, + np.float32, np.float64, np.complex64, + np.complex128]: + a = np.array(ba, ctype) + a2 = np.array(ba2, ctype) + + tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype) + assert_array_equal(np.cumsum(a, axis=0), tgt) + + tgt = np.array( + [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype) + assert_array_equal(np.cumsum(a2, axis=0), tgt) + + tgt = np.array( + [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype) + assert_array_equal(np.cumsum(a2, axis=1), tgt) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestProd: + + def test_basic(self): + ba = [1, 2, 10, 11, 6, 5, 4] + ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] + for ctype in [np.int16, np.int32, + np.float32, np.float64, np.complex64, np.complex128]: + a = np.array(ba, ctype) + a2 = np.array(ba2, ctype) + if ctype in ['1', 'b']: + assert_raises(ArithmeticError, np.prod, a) + assert_raises(ArithmeticError, np.prod, a2, 1) + else: + assert_equal(a.prod(axis=0), 26400) + assert_array_equal(a2.prod(axis=0), + np.array([50, 36, 84, 180], ctype)) + assert_array_equal(a2.prod(axis=-1), + np.array([24, 1890, 600], ctype)) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestCumprod: + + def test_basic(self): + ba = [1, 2, 10, 11, 6, 5, 4] + ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] + for ctype in [np.int16, np.int32, + np.float32, np.float64, np.complex64, np.complex128]: + a = np.array(ba, ctype) + a2 = np.array(ba2, ctype) + if ctype in ['1', 'b']: + assert_raises(ArithmeticError, np.cumprod, a) + assert_raises(ArithmeticError, np.cumprod, a2, 1) + assert_raises(ArithmeticError, np.cumprod, a) + else: + assert_array_equal(np.cumprod(a, axis=-1), + np.array([1, 2, 20, 220, + 1320, 6600, 26400], ctype)) + assert_array_equal(np.cumprod(a2, axis=0), + np.array([[1, 2, 3, 4], + [5, 12, 21, 36], + [50, 36, 84, 180]], ctype)) + assert_array_equal(np.cumprod(a2, axis=-1), + np.array([[1, 2, 6, 24], + [5, 30, 210, 1890], + [10, 30, 120, 600]], ctype)) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestDiff: + + def test_basic(self): + x = [1, 4, 6, 7, 12] + out = np.array([3, 2, 1, 5]) + out2 = np.array([-1, -1, 4]) + out3 = np.array([0, 5]) + assert_array_equal(diff(x), out) + assert_array_equal(diff(x, n=2), out2) + assert_array_equal(diff(x, n=3), out3) + + x = [1.1, 2.2, 3.0, -0.2, -0.1] + out = np.array([1.1, 0.8, -3.2, 0.1]) + assert_almost_equal(diff(x), out) + + x = [True, True, False, False] + out = np.array([False, True, False]) + out2 = np.array([True, True]) + assert_array_equal(diff(x), out) + assert_array_equal(diff(x, n=2), out2) + + def test_axis(self): + x = np.zeros((10, 20, 30)) + x[:, 1::2, :] = 1 + exp = np.ones((10, 19, 30)) + exp[:, 1::2, :] = -1 + assert_array_equal(diff(x), np.zeros((10, 20, 29))) + assert_array_equal(diff(x, axis=-1), np.zeros((10, 20, 29))) + assert_array_equal(diff(x, axis=0), np.zeros((9, 20, 30))) + assert_array_equal(diff(x, axis=1), exp) + assert_array_equal(diff(x, axis=-2), exp) + assert_raises(np.AxisError, diff, x, axis=3) + assert_raises(np.AxisError, diff, x, axis=-4) + + x = np.array(1.11111111111, np.float64) + assert_raises(ValueError, diff, x) + + def test_nd(self): + x = 20 * rand(10, 20, 30) + out1 = x[:, :, 1:] - x[:, :, :-1] + out2 = out1[:, :, 1:] - out1[:, :, :-1] + out3 = x[1:, :, :] - x[:-1, :, :] + out4 = out3[1:, :, :] - out3[:-1, :, :] + assert_array_equal(diff(x), out1) + assert_array_equal(diff(x, n=2), out2) + assert_array_equal(diff(x, axis=0), out3) + assert_array_equal(diff(x, n=2, axis=0), out4) + + def test_n(self): + x = list(range(3)) + assert_raises(ValueError, diff, x, n=-1) + output = [diff(x, n=n) for n in range(1, 5)] + expected = [[1, 1], [0], [], []] + assert_(diff(x, n=0) is x) + for n, (expected, out) in enumerate(zip(expected, output), start=1): + assert_(type(out) is np.ndarray) + assert_array_equal(out, expected) + assert_equal(out.dtype, np.int_) + assert_equal(len(out), max(0, len(x) - n)) + + def test_times(self): + x = np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64) + expected = [ + np.array([1, 1], dtype='timedelta64[D]'), + np.array([0], dtype='timedelta64[D]'), + ] + expected.extend([np.array([], dtype='timedelta64[D]')] * 3) + for n, exp in enumerate(expected, start=1): + out = diff(x, n=n) + assert_array_equal(out, exp) + assert_equal(out.dtype, exp.dtype) + + def test_subclass(self): + x = ma.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]], + mask=[[False, False], [True, False], + [False, True], [True, True], [False, False]]) + out = diff(x) + assert_array_equal(out.data, [[1], [1], [1], [1], [1]]) + assert_array_equal(out.mask, [[False], [True], + [True], [True], [False]]) + assert_(type(out) is type(x)) + + out3 = diff(x, n=3) + assert_array_equal(out3.data, [[], [], [], [], []]) + assert_array_equal(out3.mask, [[], [], [], [], []]) + assert_(type(out3) is type(x)) + + def test_prepend(self): + x = np.arange(5) + 1 + assert_array_equal(diff(x, prepend=0), np.ones(5)) + assert_array_equal(diff(x, prepend=[0]), np.ones(5)) + assert_array_equal(np.cumsum(np.diff(x, prepend=0)), x) + assert_array_equal(diff(x, prepend=[-1, 0]), np.ones(6)) + + x = np.arange(4).reshape(2, 2) + result = np.diff(x, axis=1, prepend=0) + expected = [[0, 1], [2, 1]] + assert_array_equal(result, expected) + result = np.diff(x, axis=1, prepend=[[0], [0]]) + assert_array_equal(result, expected) + + result = np.diff(x, axis=0, prepend=0) + expected = [[0, 1], [2, 2]] + assert_array_equal(result, expected) + result = np.diff(x, axis=0, prepend=[[0, 0]]) + assert_array_equal(result, expected) + + assert_raises(ValueError, np.diff, x, prepend=np.zeros((3,3))) + + assert_raises(np.AxisError, diff, x, prepend=0, axis=3) + + def test_append(self): + x = np.arange(5) + result = diff(x, append=0) + expected = [1, 1, 1, 1, -4] + assert_array_equal(result, expected) + result = diff(x, append=[0]) + assert_array_equal(result, expected) + result = diff(x, append=[0, 2]) + expected = expected + [2] + assert_array_equal(result, expected) + + x = np.arange(4).reshape(2, 2) + result = np.diff(x, axis=1, append=0) + expected = [[1, -1], [1, -3]] + assert_array_equal(result, expected) + result = np.diff(x, axis=1, append=[[0], [0]]) + assert_array_equal(result, expected) + + result = np.diff(x, axis=0, append=0) + expected = [[2, 2], [-2, -3]] + assert_array_equal(result, expected) + result = np.diff(x, axis=0, append=[[0, 0]]) + assert_array_equal(result, expected) + + assert_raises(ValueError, np.diff, x, append=np.zeros((3,3))) + + assert_raises(np.AxisError, diff, x, append=0, axis=3) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestDelete: + + def setup_method(self): + self.a = np.arange(5) + self.nd_a = np.arange(5).repeat(2).reshape(1, 5, 2) + + def _check_inverse_of_slicing(self, indices): + a_del = delete(self.a, indices) + nd_a_del = delete(self.nd_a, indices, axis=1) + msg = 'Delete failed for obj: %r' % indices + assert_array_equal(setxor1d(a_del, self.a[indices, ]), self.a, + err_msg=msg) + xor = setxor1d(nd_a_del[0,:, 0], self.nd_a[0, indices, 0]) + assert_array_equal(xor, self.nd_a[0,:, 0], err_msg=msg) + + def test_slices(self): + lims = [-6, -2, 0, 1, 2, 4, 5] + steps = [-3, -1, 1, 3] + for start in lims: + for stop in lims: + for step in steps: + s = slice(start, stop, step) + self._check_inverse_of_slicing(s) + + def test_fancy(self): + self._check_inverse_of_slicing(np.array([[0, 1], [2, 1]])) + with pytest.raises(IndexError): + delete(self.a, [100]) + with pytest.raises(IndexError): + delete(self.a, [-100]) + + self._check_inverse_of_slicing([0, -1, 2, 2]) + + self._check_inverse_of_slicing([True, False, False, True, False]) + + # not legal, indexing with these would change the dimension + with pytest.raises(ValueError): + delete(self.a, True) + with pytest.raises(ValueError): + delete(self.a, False) + + # not enough items + with pytest.raises(ValueError): + delete(self.a, [False]*4) + + def test_single(self): + self._check_inverse_of_slicing(0) + self._check_inverse_of_slicing(-4) + + def test_0d(self): + a = np.array(1) + with pytest.raises(np.AxisError): + delete(a, [], axis=0) + with pytest.raises(TypeError): + delete(a, [], axis="nonsense") + + def test_subclass(self): + class SubClass(np.ndarray): + pass + a = self.a.view(SubClass) + assert_(isinstance(delete(a, 0), SubClass)) + assert_(isinstance(delete(a, []), SubClass)) + assert_(isinstance(delete(a, [0, 1]), SubClass)) + assert_(isinstance(delete(a, slice(1, 2)), SubClass)) + assert_(isinstance(delete(a, slice(1, -2)), SubClass)) + + def test_array_order_preserve(self): + # See gh-7113 + k = np.arange(10).reshape(2, 5, order='F') + m = delete(k, slice(60, None), axis=1) + + # 'k' is Fortran ordered, and 'm' should have the + # same ordering as 'k' and NOT become C ordered + assert_equal(m.flags.c_contiguous, k.flags.c_contiguous) + assert_equal(m.flags.f_contiguous, k.flags.f_contiguous) + + def test_index_floats(self): + with pytest.raises(IndexError): + np.delete([0, 1, 2], np.array([1.0, 2.0])) + with pytest.raises(IndexError): + np.delete([0, 1, 2], np.array([], dtype=float)) + + @pytest.mark.parametrize("indexer", [np.array([1]), [1]]) + def test_single_item_array(self, indexer): + a_del_int = delete(self.a, 1) + a_del = delete(self.a, indexer) + assert_equal(a_del_int, a_del) + + nd_a_del_int = delete(self.nd_a, 1, axis=1) + nd_a_del = delete(self.nd_a, np.array([1]), axis=1) + assert_equal(nd_a_del_int, nd_a_del) + + def test_single_item_array_non_int(self): + # Special handling for integer arrays must not affect non-integer ones. + # If `False` was cast to `0` it would delete the element: + res = delete(np.ones(1), np.array([False])) + assert_array_equal(res, np.ones(1)) + + # Test the more complicated (with axis) case from gh-21840 + x = np.ones((3, 1)) + false_mask = np.array([False], dtype=bool) + true_mask = np.array([True], dtype=bool) + + res = delete(x, false_mask, axis=-1) + assert_array_equal(res, x) + res = delete(x, true_mask, axis=-1) + assert_array_equal(res, x[:, :0]) + + # Object or e.g. timedeltas should *not* be allowed + with pytest.raises(IndexError): + delete(np.ones(2), np.array([0], dtype=object)) + + with pytest.raises(IndexError): + # timedeltas are sometimes "integral, but clearly not allowed: + delete(np.ones(2), np.array([0], dtype="m8[ns]")) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestGradient: + + def test_basic(self): + v = [[1, 1], [3, 4]] + x = np.array(v) + dx = [np.array([[2., 3.], [2., 3.]]), + np.array([[0., 0.], [1., 1.]])] + assert_array_equal(gradient(x), dx) + assert_array_equal(gradient(v), dx) + + def test_args(self): + dx = np.cumsum(np.ones(5)) + dx_uneven = [1., 2., 5., 9., 11.] + f_2d = np.arange(25).reshape(5, 5) + + # distances must be scalars or have size equal to gradient[axis] + gradient(np.arange(5), 3.) + gradient(np.arange(5), np.array(3.)) + gradient(np.arange(5), dx) + # dy is set equal to dx because scalar + gradient(f_2d, 1.5) + gradient(f_2d, np.array(1.5)) + + gradient(f_2d, dx_uneven, dx_uneven) + # mix between even and uneven spaces and + # mix between scalar and vector + gradient(f_2d, dx, 2) + + # 2D but axis specified + gradient(f_2d, dx, axis=1) + + # 2d coordinate arguments are not yet allowed + assert_raises_regex(ValueError, '.*scalars or 1d', + gradient, f_2d, np.stack([dx]*2, axis=-1), 1) + + def test_badargs(self): + f_2d = np.arange(25).reshape(5, 5) + x = np.cumsum(np.ones(5)) + + # wrong sizes + assert_raises(ValueError, gradient, f_2d, x, np.ones(2)) + assert_raises(ValueError, gradient, f_2d, 1, np.ones(2)) + assert_raises(ValueError, gradient, f_2d, np.ones(2), np.ones(2)) + # wrong number of arguments + assert_raises(TypeError, gradient, f_2d, x) + assert_raises(TypeError, gradient, f_2d, x, axis=(0,1)) + assert_raises(TypeError, gradient, f_2d, x, x, x) + assert_raises(TypeError, gradient, f_2d, 1, 1, 1) + assert_raises(TypeError, gradient, f_2d, x, x, axis=1) + assert_raises(TypeError, gradient, f_2d, 1, 1, axis=1) + + def test_datetime64(self): + # Make sure gradient() can handle special types like datetime64 + x = np.array( + ['1910-08-16', '1910-08-11', '1910-08-10', '1910-08-12', + '1910-10-12', '1910-12-12', '1912-12-12'], + dtype='datetime64[D]') + dx = np.array( + [-5, -3, 0, 31, 61, 396, 731], + dtype='timedelta64[D]') + assert_array_equal(gradient(x), dx) + assert_(dx.dtype == np.dtype('timedelta64[D]')) + + def test_masked(self): + # Make sure that gradient supports subclasses like masked arrays + x = np.ma.array([[1, 1], [3, 4]], + mask=[[False, False], [False, False]]) + out = gradient(x)[0] + assert_equal(type(out), type(x)) + # And make sure that the output and input don't have aliased mask + # arrays + assert_(x._mask is not out._mask) + # Also check that edge_order=2 doesn't alter the original mask + x2 = np.ma.arange(5) + x2[2] = np.ma.masked + np.gradient(x2, edge_order=2) + assert_array_equal(x2.mask, [False, False, True, False, False]) + + def test_second_order_accurate(self): + # Testing that the relative numerical error is less that 3% for + # this example problem. This corresponds to second order + # accurate finite differences for all interior and boundary + # points. + x = np.linspace(0, 1, 10) + dx = x[1] - x[0] + y = 2 * x ** 3 + 4 * x ** 2 + 2 * x + analytical = 6 * x ** 2 + 8 * x + 2 + num_error = np.abs((np.gradient(y, dx, edge_order=2) / analytical) - 1) + assert_(np.all(num_error < 0.03) == True) + + # test with unevenly spaced + np.random.seed(0) + x = np.sort(np.random.random(10)) + y = 2 * x ** 3 + 4 * x ** 2 + 2 * x + analytical = 6 * x ** 2 + 8 * x + 2 + num_error = np.abs((np.gradient(y, x, edge_order=2) / analytical) - 1) + assert_(np.all(num_error < 0.03) == True) + + def test_spacing(self): + f = np.array([0, 2., 3., 4., 5., 5.]) + f = np.tile(f, (6,1)) + f.reshape(-1, 1) + x_uneven = np.array([0., 0.5, 1., 3., 5., 7.]) + x_even = np.arange(6.) + + fdx_even_ord1 = np.tile([2., 1.5, 1., 1., 0.5, 0.], (6,1)) + fdx_even_ord2 = np.tile([2.5, 1.5, 1., 1., 0.5, -0.5], (6,1)) + fdx_uneven_ord1 = np.tile([4., 3., 1.7, 0.5, 0.25, 0.], (6,1)) + fdx_uneven_ord2 = np.tile([5., 3., 1.7, 0.5, 0.25, -0.25], (6,1)) + + # evenly spaced + for edge_order, exp_res in [(1, fdx_even_ord1), (2, fdx_even_ord2)]: + res1 = gradient(f, 1., axis=(0,1), edge_order=edge_order) + res2 = gradient(f, x_even, x_even, + axis=(0,1), edge_order=edge_order) + res3 = gradient(f, x_even, x_even, + axis=None, edge_order=edge_order) + assert_array_equal(res1, res2) + assert_array_equal(res2, res3) + assert_almost_equal(res1[0], exp_res.T) + assert_almost_equal(res1[1], exp_res) + + res1 = gradient(f, 1., axis=0, edge_order=edge_order) + res2 = gradient(f, x_even, axis=0, edge_order=edge_order) + assert_(res1.shape == res2.shape) + assert_almost_equal(res2, exp_res.T) + + res1 = gradient(f, 1., axis=1, edge_order=edge_order) + res2 = gradient(f, x_even, axis=1, edge_order=edge_order) + assert_(res1.shape == res2.shape) + assert_array_equal(res2, exp_res) + + # unevenly spaced + for edge_order, exp_res in [(1, fdx_uneven_ord1), (2, fdx_uneven_ord2)]: + res1 = gradient(f, x_uneven, x_uneven, + axis=(0,1), edge_order=edge_order) + res2 = gradient(f, x_uneven, x_uneven, + axis=None, edge_order=edge_order) + assert_array_equal(res1, res2) + assert_almost_equal(res1[0], exp_res.T) + assert_almost_equal(res1[1], exp_res) + + res1 = gradient(f, x_uneven, axis=0, edge_order=edge_order) + assert_almost_equal(res1, exp_res.T) + + res1 = gradient(f, x_uneven, axis=1, edge_order=edge_order) + assert_almost_equal(res1, exp_res) + + # mixed + res1 = gradient(f, x_even, x_uneven, axis=(0,1), edge_order=1) + res2 = gradient(f, x_uneven, x_even, axis=(1,0), edge_order=1) + assert_array_equal(res1[0], res2[1]) + assert_array_equal(res1[1], res2[0]) + assert_almost_equal(res1[0], fdx_even_ord1.T) + assert_almost_equal(res1[1], fdx_uneven_ord1) + + res1 = gradient(f, x_even, x_uneven, axis=(0,1), edge_order=2) + res2 = gradient(f, x_uneven, x_even, axis=(1,0), edge_order=2) + assert_array_equal(res1[0], res2[1]) + assert_array_equal(res1[1], res2[0]) + assert_almost_equal(res1[0], fdx_even_ord2.T) + assert_almost_equal(res1[1], fdx_uneven_ord2) + + def test_specific_axes(self): + # Testing that gradient can work on a given axis only + v = [[1, 1], [3, 4]] + x = np.array(v) + dx = [np.array([[2., 3.], [2., 3.]]), + np.array([[0., 0.], [1., 1.]])] + assert_array_equal(gradient(x, axis=0), dx[0]) + assert_array_equal(gradient(x, axis=1), dx[1]) + assert_array_equal(gradient(x, axis=-1), dx[1]) + assert_array_equal(gradient(x, axis=(1, 0)), [dx[1], dx[0]]) + + # test axis=None which means all axes + assert_almost_equal(gradient(x, axis=None), [dx[0], dx[1]]) + # and is the same as no axis keyword given + assert_almost_equal(gradient(x, axis=None), gradient(x)) + + # test vararg order + assert_array_equal(gradient(x, 2, 3, axis=(1, 0)), + [dx[1]/2.0, dx[0]/3.0]) + # test maximal number of varargs + assert_raises(TypeError, gradient, x, 1, 2, axis=1) + + assert_raises(np.AxisError, gradient, x, axis=3) + assert_raises(np.AxisError, gradient, x, axis=-3) + # assert_raises(TypeError, gradient, x, axis=[1,]) + + def test_timedelta64(self): + # Make sure gradient() can handle special types like timedelta64 + x = np.array( + [-5, -3, 10, 12, 61, 321, 300], + dtype='timedelta64[D]') + dx = np.array( + [2, 7, 7, 25, 154, 119, -21], + dtype='timedelta64[D]') + assert_array_equal(gradient(x), dx) + assert_(dx.dtype == np.dtype('timedelta64[D]')) + + def test_inexact_dtypes(self): + for dt in [np.float16, np.float32, np.float64]: + # dtypes should not be promoted in a different way to what diff does + x = np.array([1, 2, 3], dtype=dt) + assert_equal(gradient(x).dtype, np.diff(x).dtype) + + def test_values(self): + # needs at least 2 points for edge_order ==1 + gradient(np.arange(2), edge_order=1) + # needs at least 3 points for edge_order ==1 + gradient(np.arange(3), edge_order=2) + + assert_raises(ValueError, gradient, np.arange(0), edge_order=1) + assert_raises(ValueError, gradient, np.arange(0), edge_order=2) + assert_raises(ValueError, gradient, np.arange(1), edge_order=1) + assert_raises(ValueError, gradient, np.arange(1), edge_order=2) + assert_raises(ValueError, gradient, np.arange(2), edge_order=2) + + @pytest.mark.parametrize('f_dtype', [np.uint8, ]) + def test_f_decreasing_unsigned_int(self, f_dtype): + f = np.array([5, 4, 3, 2, 1], dtype=f_dtype) + g = gradient(f) + assert_array_equal(g, [-1]*len(f)) + + @pytest.mark.parametrize('f_dtype', [np.int8, np.int16, + np.int32, np.int64]) + def test_f_signed_int_big_jump(self, f_dtype): + maxint = np.iinfo(f_dtype).max + x = np.array([1, 3]) + f = np.array([-1, maxint], dtype=f_dtype) + dfdx = gradient(f, x) + assert_array_equal(dfdx, [(maxint + 1) // 2]*2) + + @pytest.mark.parametrize('x_dtype', [np.uint8, ]) + def test_x_decreasing_unsigned(self, x_dtype): + x = np.array([3, 2, 1], dtype=x_dtype) + f = np.array([0, 2, 4]) + dfdx = gradient(f, x) + assert_array_equal(dfdx, [-2]*len(x)) + + @pytest.mark.parametrize('x_dtype', [np.int8, np.int16, + np.int32, np.int64]) + def test_x_signed_int_big_jump(self, x_dtype): + minint = np.iinfo(x_dtype).min + maxint = np.iinfo(x_dtype).max + x = np.array([-1, maxint], dtype=x_dtype) + f = np.array([minint // 2, 0]) + dfdx = gradient(f, x) + assert_array_equal(dfdx, [0.5, 0.5]) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestAngle: + + def test_basic(self): + x = [1 + 3j, np.sqrt(2) / 2.0 + 1j * np.sqrt(2) / 2, + 1, 1j, -1, -1j, 1 - 3j, -1 + 3j] + y = angle(x) + yo = [ + np.arctan(3.0 / 1.0), + np.arctan(1.0), 0, np.pi / 2, np.pi, -np.pi / 2.0, + -np.arctan(3.0 / 1.0), np.pi - np.arctan(3.0 / 1.0)] + z = angle(x, deg=True) + zo = np.array(yo) * 180 / np.pi + assert_array_almost_equal(y, yo, 11) + assert_array_almost_equal(z, zo, 11) + + def test_subclass(self): + x = np.ma.array([1 + 3j, 1, np.sqrt(2)/2 * (1 + 1j)]) + x[1] = np.ma.masked + expected = np.ma.array([np.arctan(3.0 / 1.0), 0, np.arctan(1.0)]) + expected[1] = np.ma.masked + actual = angle(x) + assert_equal(type(actual), type(expected)) + assert_equal(actual.mask, expected.mask) + assert_equal(actual, expected) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestTrimZeros: + + a = np.array([0, 0, 1, 0, 2, 3, 4, 0]) + b = a.astype(float) + c = a.astype(complex) +# d = a.astype(object) + + def values(self): + attr_names = ('a', 'b', 'c', 'd') + return (getattr(self, name) for name in attr_names) + + def test_basic(self): + slc = np.s_[2:-1] + for arr in self.values(): + res = trim_zeros(arr) + assert_array_equal(res, arr[slc]) + + def test_leading_skip(self): + slc = np.s_[:-1] + for arr in self.values(): + res = trim_zeros(arr, trim='b') + assert_array_equal(res, arr[slc]) + + def test_trailing_skip(self): + slc = np.s_[2:] + for arr in self.values(): + res = trim_zeros(arr, trim='F') + assert_array_equal(res, arr[slc]) + + def test_all_zero(self): + for _arr in self.values(): + arr = np.zeros_like(_arr, dtype=_arr.dtype) + + res1 = trim_zeros(arr, trim='B') + assert len(res1) == 0 + + res2 = trim_zeros(arr, trim='f') + assert len(res2) == 0 + + def test_size_zero(self): + arr = np.zeros(0) + res = trim_zeros(arr) + assert_array_equal(arr, res) + + @pytest.mark.parametrize( + 'arr', + [np.array([0, 2**62, 0]), +# np.array([0, 2**63, 0]), # FIXME +# np.array([0, 2**64, 0]) + ]) + def test_overflow(self, arr): + slc = np.s_[1:2] + res = trim_zeros(arr) + assert_array_equal(res, arr[slc]) + + def test_no_trim(self): + arr = np.array([None, 1, None]) + res = trim_zeros(arr) + assert_array_equal(arr, res) + + def test_list_to_list(self): + res = trim_zeros(self.a.tolist()) + assert isinstance(res, list) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestExtins: + + def test_basic(self): + a = np.array([1, 3, 2, 1, 2, 3, 3]) + b = extract(a > 1, a) + assert_array_equal(b, [3, 2, 2, 3, 3]) + + def test_place(self): + # Make sure that non-np.ndarray objects + # raise an error instead of doing nothing + assert_raises(TypeError, place, [1, 2, 3], [True, False], [0, 1]) + + a = np.array([1, 4, 3, 2, 5, 8, 7]) + place(a, [0, 1, 0, 1, 0, 1, 0], [2, 4, 6]) + assert_array_equal(a, [1, 2, 3, 4, 5, 6, 7]) + + place(a, np.zeros(7), []) + assert_array_equal(a, np.arange(1, 8)) + + place(a, [1, 0, 1, 0, 1, 0, 1], [8, 9]) + assert_array_equal(a, [8, 2, 9, 4, 8, 6, 9]) + assert_raises_regex(ValueError, "Cannot insert from an empty array", + lambda: place(a, [0, 0, 0, 0, 0, 1, 0], [])) + + # See Issue #6974 + a = np.array(['12', '34']) + place(a, [0, 1], '9') + assert_array_equal(a, ['12', '9']) + + def test_both(self): + a = rand(10) + mask = a > 0.5 + ac = a.copy() + c = extract(mask, a) + place(a, mask, 0) + place(a, mask, c) + assert_array_equal(a, ac) + + +# _foo1 and _foo2 are used in some tests in TestVectorize. + +def _foo1(x, y=1.0): + return y*math.floor(x) + + +def _foo2(x, y=1.0, z=0.0): + return y*math.floor(x) + z + + +@pytest.mark.skip(reason='vectorize not implemented') +class TestVectorize: + + def test_simple(self): + def addsubtract(a, b): + if a > b: + return a - b + else: + return a + b + + f = vectorize(addsubtract) + r = f([0, 3, 6, 9], [1, 3, 5, 7]) + assert_array_equal(r, [1, 6, 1, 2]) + + def test_scalar(self): + def addsubtract(a, b): + if a > b: + return a - b + else: + return a + b + + f = vectorize(addsubtract) + r = f([0, 3, 6, 9], 5) + assert_array_equal(r, [5, 8, 1, 4]) + + def test_large(self): + x = np.linspace(-3, 2, 10000) + f = vectorize(lambda x: x) + y = f(x) + assert_array_equal(y, x) + + def test_ufunc(self): + f = vectorize(math.cos) + args = np.array([0, 0.5 * np.pi, np.pi, 1.5 * np.pi, 2 * np.pi]) + r1 = f(args) + r2 = np.cos(args) + assert_array_almost_equal(r1, r2) + + def test_keywords(self): + + def foo(a, b=1): + return a + b + + f = vectorize(foo) + args = np.array([1, 2, 3]) + r1 = f(args) + r2 = np.array([2, 3, 4]) + assert_array_equal(r1, r2) + r1 = f(args, 2) + r2 = np.array([3, 4, 5]) + assert_array_equal(r1, r2) + + def test_keywords_with_otypes_order1(self): + # gh-1620: The second call of f would crash with + # `ValueError: invalid number of arguments`. + f = vectorize(_foo1, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(np.arange(3.0), 1.0) + r2 = f(np.arange(3.0)) + assert_array_equal(r1, r2) + + def test_keywords_with_otypes_order2(self): + # gh-1620: The second call of f would crash with + # `ValueError: non-broadcastable output operand with shape () + # doesn't match the broadcast shape (3,)`. + f = vectorize(_foo1, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(np.arange(3.0)) + r2 = f(np.arange(3.0), 1.0) + assert_array_equal(r1, r2) + + def test_keywords_with_otypes_order3(self): + # gh-1620: The third call of f would crash with + # `ValueError: invalid number of arguments`. + f = vectorize(_foo1, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(np.arange(3.0)) + r2 = f(np.arange(3.0), y=1.0) + r3 = f(np.arange(3.0)) + assert_array_equal(r1, r2) + assert_array_equal(r1, r3) + + def test_keywords_with_otypes_several_kwd_args1(self): + # gh-1620 Make sure different uses of keyword arguments + # don't break the vectorized function. + f = vectorize(_foo2, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(10.4, z=100) + r2 = f(10.4, y=-1) + r3 = f(10.4) + assert_equal(r1, _foo2(10.4, z=100)) + assert_equal(r2, _foo2(10.4, y=-1)) + assert_equal(r3, _foo2(10.4)) + + def test_keywords_with_otypes_several_kwd_args2(self): + # gh-1620 Make sure different uses of keyword arguments + # don't break the vectorized function. + f = vectorize(_foo2, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(z=100, x=10.4, y=-1) + r2 = f(1, 2, 3) + assert_equal(r1, _foo2(z=100, x=10.4, y=-1)) + assert_equal(r2, _foo2(1, 2, 3)) + + def test_keywords_no_func_code(self): + # This needs to test a function that has keywords but + # no func_code attribute, since otherwise vectorize will + # inspect the func_code. + import random + try: + vectorize(random.randrange) # Should succeed + except Exception: + raise AssertionError() + + def test_keywords2_ticket_2100(self): + # Test kwarg support: enhancement ticket 2100 + + def foo(a, b=1): + return a + b + + f = vectorize(foo) + args = np.array([1, 2, 3]) + r1 = f(a=args) + r2 = np.array([2, 3, 4]) + assert_array_equal(r1, r2) + r1 = f(b=1, a=args) + assert_array_equal(r1, r2) + r1 = f(args, b=2) + r2 = np.array([3, 4, 5]) + assert_array_equal(r1, r2) + + def test_keywords3_ticket_2100(self): + # Test excluded with mixed positional and kwargs: ticket 2100 + def mypolyval(x, p): + _p = list(p) + res = _p.pop(0) + while _p: + res = res * x + _p.pop(0) + return res + + vpolyval = np.vectorize(mypolyval, excluded=['p', 1]) + ans = [3, 6] + assert_array_equal(ans, vpolyval(x=[0, 1], p=[1, 2, 3])) + assert_array_equal(ans, vpolyval([0, 1], p=[1, 2, 3])) + assert_array_equal(ans, vpolyval([0, 1], [1, 2, 3])) + + def test_keywords4_ticket_2100(self): + # Test vectorizing function with no positional args. + @vectorize + def f(**kw): + res = 1.0 + for _k in kw: + res *= kw[_k] + return res + + assert_array_equal(f(a=[1, 2], b=[3, 4]), [3, 8]) + + def test_keywords5_ticket_2100(self): + # Test vectorizing function with no kwargs args. + @vectorize + def f(*v): + return np.prod(v) + + assert_array_equal(f([1, 2], [3, 4]), [3, 8]) + + def test_coverage1_ticket_2100(self): + def foo(): + return 1 + + f = vectorize(foo) + assert_array_equal(f(), 1) + + def test_assigning_docstring(self): + def foo(x): + """Original documentation""" + return x + + f = vectorize(foo) + assert_equal(f.__doc__, foo.__doc__) + + doc = "Provided documentation" + f = vectorize(foo, doc=doc) + assert_equal(f.__doc__, doc) + + def test_UnboundMethod_ticket_1156(self): + # Regression test for issue 1156 + class Foo: + b = 2 + + def bar(self, a): + return a ** self.b + + assert_array_equal(vectorize(Foo().bar)(np.arange(9)), + np.arange(9) ** 2) + assert_array_equal(vectorize(Foo.bar)(Foo(), np.arange(9)), + np.arange(9) ** 2) + + def test_execution_order_ticket_1487(self): + # Regression test for dependence on execution order: issue 1487 + f1 = vectorize(lambda x: x) + res1a = f1(np.arange(3)) + res1b = f1(np.arange(0.1, 3)) + f2 = vectorize(lambda x: x) + res2b = f2(np.arange(0.1, 3)) + res2a = f2(np.arange(3)) + assert_equal(res1a, res2a) + assert_equal(res1b, res2b) + + def test_string_ticket_1892(self): + # Test vectorization over strings: issue 1892. + f = np.vectorize(lambda x: x) + s = '0123456789' * 10 + assert_equal(s, f(s)) + + def test_cache(self): + # Ensure that vectorized func called exactly once per argument. + _calls = [0] + + @vectorize + def f(x): + _calls[0] += 1 + return x ** 2 + + f.cache = True + x = np.arange(5) + assert_array_equal(f(x), x * x) + assert_equal(_calls[0], len(x)) + + def test_otypes(self): + f = np.vectorize(lambda x: x) + f.otypes = 'i' + x = np.arange(5) + assert_array_equal(f(x), x) + + @pytest.mark.skip(reason='no _parse_gufunc_signature') + def test_parse_gufunc_signature(self): + assert_equal(nfb._parse_gufunc_signature('(x)->()'), ([('x',)], [()])) + assert_equal(nfb._parse_gufunc_signature('(x,y)->()'), + ([('x', 'y')], [()])) + assert_equal(nfb._parse_gufunc_signature('(x),(y)->()'), + ([('x',), ('y',)], [()])) + assert_equal(nfb._parse_gufunc_signature('(x)->(y)'), + ([('x',)], [('y',)])) + assert_equal(nfb._parse_gufunc_signature('(x)->(y),()'), + ([('x',)], [('y',), ()])) + assert_equal(nfb._parse_gufunc_signature('(),(a,b,c),(d)->(d,e)'), + ([(), ('a', 'b', 'c'), ('d',)], [('d', 'e')])) + + # Tests to check if whitespaces are ignored + assert_equal(nfb._parse_gufunc_signature('(x )->()'), ([('x',)], [()])) + assert_equal(nfb._parse_gufunc_signature('( x , y )->( )'), + ([('x', 'y')], [()])) + assert_equal(nfb._parse_gufunc_signature('(x),( y) ->()'), + ([('x',), ('y',)], [()])) + assert_equal(nfb._parse_gufunc_signature('( x)-> (y ) '), + ([('x',)], [('y',)])) + assert_equal(nfb._parse_gufunc_signature(' (x)->( y),( )'), + ([('x',)], [('y',), ()])) + assert_equal(nfb._parse_gufunc_signature( + '( ), ( a, b,c ) ,( d) -> (d , e)'), + ([(), ('a', 'b', 'c'), ('d',)], [('d', 'e')])) + + with assert_raises(ValueError): + nfb._parse_gufunc_signature('(x)(y)->()') + with assert_raises(ValueError): + nfb._parse_gufunc_signature('(x),(y)->') + with assert_raises(ValueError): + nfb._parse_gufunc_signature('((x))->(x)') + + def test_signature_simple(self): + def addsubtract(a, b): + if a > b: + return a - b + else: + return a + b + + f = vectorize(addsubtract, signature='(),()->()') + r = f([0, 3, 6, 9], [1, 3, 5, 7]) + assert_array_equal(r, [1, 6, 1, 2]) + + def test_signature_mean_last(self): + def mean(a): + return a.mean() + + f = vectorize(mean, signature='(n)->()') + r = f([[1, 3], [2, 4]]) + assert_array_equal(r, [2, 3]) + + def test_signature_center(self): + def center(a): + return a - a.mean() + + f = vectorize(center, signature='(n)->(n)') + r = f([[1, 3], [2, 4]]) + assert_array_equal(r, [[-1, 1], [-1, 1]]) + + def test_signature_two_outputs(self): + f = vectorize(lambda x: (x, x), signature='()->(),()') + r = f([1, 2, 3]) + assert_(isinstance(r, tuple) and len(r) == 2) + assert_array_equal(r[0], [1, 2, 3]) + assert_array_equal(r[1], [1, 2, 3]) + + def test_signature_outer(self): + f = vectorize(np.outer, signature='(a),(b)->(a,b)') + r = f([1, 2], [1, 2, 3]) + assert_array_equal(r, [[1, 2, 3], [2, 4, 6]]) + + r = f([[[1, 2]]], [1, 2, 3]) + assert_array_equal(r, [[[[1, 2, 3], [2, 4, 6]]]]) + + r = f([[1, 0], [2, 0]], [1, 2, 3]) + assert_array_equal(r, [[[1, 2, 3], [0, 0, 0]], + [[2, 4, 6], [0, 0, 0]]]) + + r = f([1, 2], [[1, 2, 3], [0, 0, 0]]) + assert_array_equal(r, [[[1, 2, 3], [2, 4, 6]], + [[0, 0, 0], [0, 0, 0]]]) + + def test_signature_computed_size(self): + f = vectorize(lambda x: x[:-1], signature='(n)->(m)') + r = f([1, 2, 3]) + assert_array_equal(r, [1, 2]) + + r = f([[1, 2, 3], [2, 3, 4]]) + assert_array_equal(r, [[1, 2], [2, 3]]) + + def test_signature_excluded(self): + + def foo(a, b=1): + return a + b + + f = vectorize(foo, signature='()->()', excluded={'b'}) + assert_array_equal(f([1, 2, 3]), [2, 3, 4]) + assert_array_equal(f([1, 2, 3], b=0), [1, 2, 3]) + + def test_signature_otypes(self): + f = vectorize(lambda x: x, signature='(n)->(n)', otypes=['float64']) + r = f([1, 2, 3]) + assert_equal(r.dtype, np.dtype('float64')) + assert_array_equal(r, [1, 2, 3]) + + def test_signature_invalid_inputs(self): + f = vectorize(operator.add, signature='(n),(n)->(n)') + with assert_raises_regex(TypeError, 'wrong number of positional'): + f([1, 2]) + with assert_raises_regex( + ValueError, 'does not have enough dimensions'): + f(1, 2) + with assert_raises_regex( + ValueError, 'inconsistent size for core dimension'): + f([1, 2], [1, 2, 3]) + + f = vectorize(operator.add, signature='()->()') + with assert_raises_regex(TypeError, 'wrong number of positional'): + f(1, 2) + + def test_signature_invalid_outputs(self): + + f = vectorize(lambda x: x[:-1], signature='(n)->(n)') + with assert_raises_regex( + ValueError, 'inconsistent size for core dimension'): + f([1, 2, 3]) + + f = vectorize(lambda x: x, signature='()->(),()') + with assert_raises_regex(ValueError, 'wrong number of outputs'): + f(1) + + f = vectorize(lambda x: (x, x), signature='()->()') + with assert_raises_regex(ValueError, 'wrong number of outputs'): + f([1, 2]) + + def test_size_zero_output(self): + # see issue 5868 + f = np.vectorize(lambda x: x) + x = np.zeros([0, 5], dtype=int) + with assert_raises_regex(ValueError, 'otypes'): + f(x) + + f.otypes = 'i' + assert_array_equal(f(x), x) + + f = np.vectorize(lambda x: x, signature='()->()') + with assert_raises_regex(ValueError, 'otypes'): + f(x) + + f = np.vectorize(lambda x: x, signature='()->()', otypes='i') + assert_array_equal(f(x), x) + + f = np.vectorize(lambda x: x, signature='(n)->(n)', otypes='i') + assert_array_equal(f(x), x) + + f = np.vectorize(lambda x: x, signature='(n)->(n)') + assert_array_equal(f(x.T), x.T) + + f = np.vectorize(lambda x: [x], signature='()->(n)', otypes='i') + with assert_raises_regex(ValueError, 'new output dimensions'): + f(x) + + def test_subclasses(self): + class subclass(np.ndarray): + pass + + m = np.array([[1., 0., 0.], + [0., 0., 1.], + [0., 1., 0.]]).view(subclass) + v = np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]).view(subclass) + # generalized (gufunc) + matvec = np.vectorize(np.matmul, signature='(m,m),(m)->(m)') + r = matvec(m, v) + assert_equal(type(r), subclass) + assert_equal(r, [[1., 3., 2.], [4., 6., 5.], [7., 9., 8.]]) + + # element-wise (ufunc) + mult = np.vectorize(lambda x, y: x*y) + r = mult(m, v) + assert_equal(type(r), subclass) + assert_equal(r, m * v) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestLeaks: + class A: + iters = 20 + + def bound(self, *args): + return 0 + + @staticmethod + def unbound(*args): + return 0 + + @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") + @pytest.mark.parametrize('name, incr', [ + ('bound', A.iters), + ('unbound', 0), + ]) + def test_frompyfunc_leaks(self, name, incr): + # exposed in gh-11867 as np.vectorized, but the problem stems from + # frompyfunc. + # class.attribute = np.frompyfunc() creates a + # reference cycle if is a bound class method. It requires a + # gc collection cycle to break the cycle (on CPython 3) + import gc + A_func = getattr(self.A, name) + gc.disable() + try: + refcount = sys.getrefcount(A_func) + for i in range(self.A.iters): + a = self.A() + a.f = np.frompyfunc(getattr(a, name), 1, 1) + out = a.f(np.arange(10)) + a = None + # A.func is part of a reference cycle if incr is non-zero + assert_equal(sys.getrefcount(A_func), refcount + incr) + for i in range(5): + gc.collect() + assert_equal(sys.getrefcount(A_func), refcount) + finally: + gc.enable() + + +@pytest.mark.xfail(reason='TODO: implement') +class TestDigitize: + + def test_forward(self): + x = np.arange(-6, 5) + bins = np.arange(-5, 5) + assert_array_equal(digitize(x, bins), np.arange(11)) + + def test_reverse(self): + x = np.arange(5, -6, -1) + bins = np.arange(5, -5, -1) + assert_array_equal(digitize(x, bins), np.arange(11)) + + def test_random(self): + x = rand(10) + bin = np.linspace(x.min(), x.max(), 10) + assert_(np.all(digitize(x, bin) != 0)) + + def test_right_basic(self): + x = [1, 5, 4, 10, 8, 11, 0] + bins = [1, 5, 10] + default_answer = [1, 2, 1, 3, 2, 3, 0] + assert_array_equal(digitize(x, bins), default_answer) + right_answer = [0, 1, 1, 2, 2, 3, 0] + assert_array_equal(digitize(x, bins, True), right_answer) + + def test_right_open(self): + x = np.arange(-6, 5) + bins = np.arange(-6, 4) + assert_array_equal(digitize(x, bins, True), np.arange(11)) + + def test_right_open_reverse(self): + x = np.arange(5, -6, -1) + bins = np.arange(4, -6, -1) + assert_array_equal(digitize(x, bins, True), np.arange(11)) + + def test_right_open_random(self): + x = rand(10) + bins = np.linspace(x.min(), x.max(), 10) + assert_(np.all(digitize(x, bins, True) != 10)) + + def test_monotonic(self): + x = [-1, 0, 1, 2] + bins = [0, 0, 1] + assert_array_equal(digitize(x, bins, False), [0, 2, 3, 3]) + assert_array_equal(digitize(x, bins, True), [0, 0, 2, 3]) + bins = [1, 1, 0] + assert_array_equal(digitize(x, bins, False), [3, 2, 0, 0]) + assert_array_equal(digitize(x, bins, True), [3, 3, 2, 0]) + bins = [1, 1, 1, 1] + assert_array_equal(digitize(x, bins, False), [0, 0, 4, 4]) + assert_array_equal(digitize(x, bins, True), [0, 0, 0, 4]) + bins = [0, 0, 1, 0] + assert_raises(ValueError, digitize, x, bins) + bins = [1, 1, 0, 1] + assert_raises(ValueError, digitize, x, bins) + + def test_casting_error(self): + x = [1, 2, 3 + 1.j] + bins = [1, 2, 3] + assert_raises(TypeError, digitize, x, bins) + x, bins = bins, x + assert_raises(TypeError, digitize, x, bins) + + def test_return_type(self): + # Functions returning indices should always return base ndarrays + class A(np.ndarray): + pass + a = np.arange(5).view(A) + b = np.arange(1, 3).view(A) + assert_(not isinstance(digitize(b, a, False), A)) + assert_(not isinstance(digitize(b, a, True), A)) + + def test_large_integers_increasing(self): + # gh-11022 + x = 2**54 # loses precision in a float + assert_equal(np.digitize(x, [x - 1, x + 1]), 1) + + @pytest.mark.xfail( + reason="gh-11022: np.core.multiarray._monoticity loses precision") + def test_large_integers_decreasing(self): + # gh-11022 + x = 2**54 # loses precision in a float + assert_equal(np.digitize(x, [x + 1, x - 1]), 1) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestUnwrap: + + def test_simple(self): + # check that unwrap removes jumps greater that 2*pi + assert_array_equal(unwrap([1, 1 + 2 * np.pi]), [1, 1]) + # check that unwrap maintains continuity + assert_(np.all(diff(unwrap(rand(10) * 100)) < np.pi)) + + def test_period(self): + # check that unwrap removes jumps greater that 255 + assert_array_equal(unwrap([1, 1 + 256], period=255), [1, 2]) + # check that unwrap maintains continuity + assert_(np.all(diff(unwrap(rand(10) * 1000, period=255)) < 255)) + # check simple case + simple_seq = np.array([0, 75, 150, 225, 300]) + wrap_seq = np.mod(simple_seq, 255) + assert_array_equal(unwrap(wrap_seq, period=255), simple_seq) + # check custom discont value + uneven_seq = np.array([0, 75, 150, 225, 300, 430]) + wrap_uneven = np.mod(uneven_seq, 250) + no_discont = unwrap(wrap_uneven, period=250) + assert_array_equal(no_discont, [0, 75, 150, 225, 300, 180]) + sm_discont = unwrap(wrap_uneven, period=250, discont=140) + assert_array_equal(sm_discont, [0, 75, 150, 225, 300, 430]) + assert sm_discont.dtype == wrap_uneven.dtype + + +@pytest.mark.xfail(reason='TODO: implement') +@pytest.mark.parametrize( + "dtype", "O" + np.typecodes["AllInteger"] + np.typecodes["Float"] +) +@pytest.mark.parametrize("M", [0, 1, 10]) +class TestFilterwindows: + + def test_hanning(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = hanning(scalar) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 4.500, 4) + + def test_hamming(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = hamming(scalar) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 4.9400, 4) + + def test_bartlett(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = bartlett(scalar) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 4.4444, 4) + + def test_blackman(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = blackman(scalar) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 3.7800, 4) + + def test_kaiser(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = kaiser(scalar, 0) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 10, 15) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestTrapz: + + def test_simple(self): + x = np.arange(-10, 10, .1) + r = trapz(np.exp(-.5 * x ** 2) / np.sqrt(2 * np.pi), dx=0.1) + # check integral of normal equals 1 + assert_almost_equal(r, 1, 7) + + def test_ndim(self): + x = np.linspace(0, 1, 3) + y = np.linspace(0, 2, 8) + z = np.linspace(0, 3, 13) + + wx = np.ones_like(x) * (x[1] - x[0]) + wx[0] /= 2 + wx[-1] /= 2 + wy = np.ones_like(y) * (y[1] - y[0]) + wy[0] /= 2 + wy[-1] /= 2 + wz = np.ones_like(z) * (z[1] - z[0]) + wz[0] /= 2 + wz[-1] /= 2 + + q = x[:, None, None] + y[None,:, None] + z[None, None,:] + + qx = (q * wx[:, None, None]).sum(axis=0) + qy = (q * wy[None, :, None]).sum(axis=1) + qz = (q * wz[None, None, :]).sum(axis=2) + + # n-d `x` + r = trapz(q, x=x[:, None, None], axis=0) + assert_almost_equal(r, qx) + r = trapz(q, x=y[None,:, None], axis=1) + assert_almost_equal(r, qy) + r = trapz(q, x=z[None, None,:], axis=2) + assert_almost_equal(r, qz) + + # 1-d `x` + r = trapz(q, x=x, axis=0) + assert_almost_equal(r, qx) + r = trapz(q, x=y, axis=1) + assert_almost_equal(r, qy) + r = trapz(q, x=z, axis=2) + assert_almost_equal(r, qz) + + def test_masked(self): + # Testing that masked arrays behave as if the function is 0 where + # masked + x = np.arange(5) + y = x * x + mask = x == 2 + ym = np.ma.array(y, mask=mask) + r = 13.0 # sum(0.5 * (0 + 1) * 1.0 + 0.5 * (9 + 16)) + assert_almost_equal(trapz(ym, x), r) + + xm = np.ma.array(x, mask=mask) + assert_almost_equal(trapz(ym, xm), r) + + xm = np.ma.array(x, mask=mask) + assert_almost_equal(trapz(y, xm), r) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestSinc: + + def test_simple(self): + assert_(sinc(0) == 1) + w = sinc(np.linspace(-1, 1, 100)) + # check symmetry + assert_array_almost_equal(w, flipud(w), 7) + + def test_array_like(self): + x = [0, 0.5] + y1 = sinc(np.array(x)) + y2 = sinc(list(x)) + y3 = sinc(tuple(x)) + assert_array_equal(y1, y2) + assert_array_equal(y1, y3) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestUnique: + + def test_simple(self): + x = np.array([4, 3, 2, 1, 1, 2, 3, 4, 0]) + assert_(np.all(unique(x) == [0, 1, 2, 3, 4])) + assert_(unique(np.array([1, 1, 1, 1, 1])) == np.array([1])) + x = ['widget', 'ham', 'foo', 'bar', 'foo', 'ham'] + assert_(np.all(unique(x) == ['bar', 'foo', 'ham', 'widget'])) + x = np.array([5 + 6j, 1 + 1j, 1 + 10j, 10, 5 + 6j]) + assert_(np.all(unique(x) == [1 + 1j, 1 + 10j, 5 + 6j, 10])) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestCheckFinite: + + def test_simple(self): + a = [1, 2, 3] + b = [1, 2, np.inf] + c = [1, 2, np.nan] + np.lib.asarray_chkfinite(a) + assert_raises(ValueError, np.lib.asarray_chkfinite, b) + assert_raises(ValueError, np.lib.asarray_chkfinite, c) + + def test_dtype_order(self): + # Regression test for missing dtype and order arguments + a = [1, 2, 3] + a = np.lib.asarray_chkfinite(a, order='F', dtype=np.float64) + assert_(a.dtype == np.float64) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestCorrCoef: + A = np.array( + [[0.15391142, 0.18045767, 0.14197213], + [0.70461506, 0.96474128, 0.27906989], + [0.9297531, 0.32296769, 0.19267156]]) + B = np.array( + [[0.10377691, 0.5417086, 0.49807457], + [0.82872117, 0.77801674, 0.39226705], + [0.9314666, 0.66800209, 0.03538394]]) + res1 = np.array( + [[1., 0.9379533, -0.04931983], + [0.9379533, 1., 0.30007991], + [-0.04931983, 0.30007991, 1.]]) + res2 = np.array( + [[1., 0.9379533, -0.04931983, 0.30151751, 0.66318558, 0.51532523], + [0.9379533, 1., 0.30007991, -0.04781421, 0.88157256, 0.78052386], + [-0.04931983, 0.30007991, 1., -0.96717111, 0.71483595, 0.83053601], + [0.30151751, -0.04781421, -0.96717111, 1., -0.51366032, -0.66173113], + [0.66318558, 0.88157256, 0.71483595, -0.51366032, 1., 0.98317823], + [0.51532523, 0.78052386, 0.83053601, -0.66173113, 0.98317823, 1.]]) + + def test_non_array(self): + assert_almost_equal(np.corrcoef([0, 1, 0], [1, 0, 1]), + [[1., -1.], [-1., 1.]]) + + def test_simple(self): + tgt1 = corrcoef(self.A) + assert_almost_equal(tgt1, self.res1) + assert_(np.all(np.abs(tgt1) <= 1.0)) + + tgt2 = corrcoef(self.A, self.B) + assert_almost_equal(tgt2, self.res2) + assert_(np.all(np.abs(tgt2) <= 1.0)) + + def test_ddof(self): + # ddof raises DeprecationWarning + with suppress_warnings() as sup: + warnings.simplefilter("always") + assert_warns(DeprecationWarning, corrcoef, self.A, ddof=-1) + sup.filter(DeprecationWarning) + # ddof has no or negligible effect on the function + assert_almost_equal(corrcoef(self.A, ddof=-1), self.res1) + assert_almost_equal(corrcoef(self.A, self.B, ddof=-1), self.res2) + assert_almost_equal(corrcoef(self.A, ddof=3), self.res1) + assert_almost_equal(corrcoef(self.A, self.B, ddof=3), self.res2) + + def test_bias(self): + # bias raises DeprecationWarning + with suppress_warnings() as sup: + warnings.simplefilter("always") + assert_warns(DeprecationWarning, corrcoef, self.A, self.B, 1, 0) + assert_warns(DeprecationWarning, corrcoef, self.A, bias=0) + sup.filter(DeprecationWarning) + # bias has no or negligible effect on the function + assert_almost_equal(corrcoef(self.A, bias=1), self.res1) + + def test_complex(self): + x = np.array([[1, 2, 3], [1j, 2j, 3j]]) + res = corrcoef(x) + tgt = np.array([[1., -1.j], [1.j, 1.]]) + assert_allclose(res, tgt) + assert_(np.all(np.abs(res) <= 1.0)) + + def test_xy(self): + x = np.array([[1, 2, 3]]) + y = np.array([[1j, 2j, 3j]]) + assert_allclose(np.corrcoef(x, y), np.array([[1., -1.j], [1.j, 1.]])) + + def test_empty(self): + with warnings.catch_warnings(record=True): + warnings.simplefilter('always', RuntimeWarning) + assert_array_equal(corrcoef(np.array([])), np.nan) + assert_array_equal(corrcoef(np.array([]).reshape(0, 2)), + np.array([]).reshape(0, 0)) + assert_array_equal(corrcoef(np.array([]).reshape(2, 0)), + np.array([[np.nan, np.nan], [np.nan, np.nan]])) + + def test_extreme(self): + x = [[1e-100, 1e100], [1e100, 1e-100]] + with np.errstate(all='raise'): + c = corrcoef(x) + assert_array_almost_equal(c, np.array([[1., -1.], [-1., 1.]])) + assert_(np.all(np.abs(c) <= 1.0)) + + @pytest.mark.parametrize("test_type", [np.half, np.single, np.double]) + def test_corrcoef_dtype(self, test_type): + cast_A = self.A.astype(test_type) + res = corrcoef(cast_A, dtype=test_type) + assert test_type == res.dtype + + +@pytest.mark.xfail(reason='TODO: implement') +class TestCov: + x1 = np.array([[0, 2], [1, 1], [2, 0]]).T + res1 = np.array([[1., -1.], [-1., 1.]]) + x2 = np.array([0.0, 1.0, 2.0], ndmin=2) + frequencies = np.array([1, 4, 1]) + x2_repeats = np.array([[0.0], [1.0], [1.0], [1.0], [1.0], [2.0]]).T + res2 = np.array([[0.4, -0.4], [-0.4, 0.4]]) + unit_frequencies = np.ones(3, dtype=np.int_) + weights = np.array([1.0, 4.0, 1.0]) + res3 = np.array([[2. / 3., -2. / 3.], [-2. / 3., 2. / 3.]]) + unit_weights = np.ones(3) + x3 = np.array([0.3942, 0.5969, 0.7730, 0.9918, 0.7964]) + + def test_basic(self): + assert_allclose(cov(self.x1), self.res1) + + def test_complex(self): + x = np.array([[1, 2, 3], [1j, 2j, 3j]]) + res = np.array([[1., -1.j], [1.j, 1.]]) + assert_allclose(cov(x), res) + assert_allclose(cov(x, aweights=np.ones(3)), res) + + def test_xy(self): + x = np.array([[1, 2, 3]]) + y = np.array([[1j, 2j, 3j]]) + assert_allclose(cov(x, y), np.array([[1., -1.j], [1.j, 1.]])) + + def test_empty(self): + with warnings.catch_warnings(record=True): + warnings.simplefilter('always', RuntimeWarning) + assert_array_equal(cov(np.array([])), np.nan) + assert_array_equal(cov(np.array([]).reshape(0, 2)), + np.array([]).reshape(0, 0)) + assert_array_equal(cov(np.array([]).reshape(2, 0)), + np.array([[np.nan, np.nan], [np.nan, np.nan]])) + + def test_wrong_ddof(self): + with warnings.catch_warnings(record=True): + warnings.simplefilter('always', RuntimeWarning) + assert_array_equal(cov(self.x1, ddof=5), + np.array([[np.inf, -np.inf], + [-np.inf, np.inf]])) + + def test_1D_rowvar(self): + assert_allclose(cov(self.x3), cov(self.x3, rowvar=False)) + y = np.array([0.0780, 0.3107, 0.2111, 0.0334, 0.8501]) + assert_allclose(cov(self.x3, y), cov(self.x3, y, rowvar=False)) + + def test_1D_variance(self): + assert_allclose(cov(self.x3, ddof=1), np.var(self.x3, ddof=1)) + + def test_fweights(self): + assert_allclose(cov(self.x2, fweights=self.frequencies), + cov(self.x2_repeats)) + assert_allclose(cov(self.x1, fweights=self.frequencies), + self.res2) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies), + self.res1) + nonint = self.frequencies + 0.5 + assert_raises(TypeError, cov, self.x1, fweights=nonint) + f = np.ones((2, 3), dtype=np.int_) + assert_raises(RuntimeError, cov, self.x1, fweights=f) + f = np.ones(2, dtype=np.int_) + assert_raises(RuntimeError, cov, self.x1, fweights=f) + f = -1 * np.ones(3, dtype=np.int_) + assert_raises(ValueError, cov, self.x1, fweights=f) + + def test_aweights(self): + assert_allclose(cov(self.x1, aweights=self.weights), self.res3) + assert_allclose(cov(self.x1, aweights=3.0 * self.weights), + cov(self.x1, aweights=self.weights)) + assert_allclose(cov(self.x1, aweights=self.unit_weights), self.res1) + w = np.ones((2, 3)) + assert_raises(RuntimeError, cov, self.x1, aweights=w) + w = np.ones(2) + assert_raises(RuntimeError, cov, self.x1, aweights=w) + w = -1.0 * np.ones(3) + assert_raises(ValueError, cov, self.x1, aweights=w) + + def test_unit_fweights_and_aweights(self): + assert_allclose(cov(self.x2, fweights=self.frequencies, + aweights=self.unit_weights), + cov(self.x2_repeats)) + assert_allclose(cov(self.x1, fweights=self.frequencies, + aweights=self.unit_weights), + self.res2) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies, + aweights=self.unit_weights), + self.res1) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies, + aweights=self.weights), + self.res3) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies, + aweights=3.0 * self.weights), + cov(self.x1, aweights=self.weights)) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies, + aweights=self.unit_weights), + self.res1) + + @pytest.mark.parametrize("test_type", [np.half, np.single, np.double]) + def test_cov_dtype(self, test_type): + cast_x1 = self.x1.astype(test_type) + res = cov(cast_x1, dtype=test_type) + assert test_type == res.dtype + + +@pytest.mark.xfail(reason='TODO: implement') +class Test_I0: + + def test_simple(self): + assert_almost_equal( + i0(0.5), + np.array(1.0634833707413234)) + + # need at least one test above 8, as the implementation is piecewise + A = np.array([0.49842636, 0.6969809, 0.22011976, 0.0155549, 10.0]) + expected = np.array([1.06307822, 1.12518299, 1.01214991, 1.00006049, 2815.71662847]) + assert_almost_equal(i0(A), expected) + assert_almost_equal(i0(-A), expected) + + B = np.array([[0.827002, 0.99959078], + [0.89694769, 0.39298162], + [0.37954418, 0.05206293], + [0.36465447, 0.72446427], + [0.48164949, 0.50324519]]) + assert_almost_equal( + i0(B), + np.array([[1.17843223, 1.26583466], + [1.21147086, 1.03898290], + [1.03633899, 1.00067775], + [1.03352052, 1.13557954], + [1.05884290, 1.06432317]])) + # Regression test for gh-11205 + i0_0 = np.i0([0.]) + assert_equal(i0_0.shape, (1,)) + assert_array_equal(np.i0([0.]), np.array([1.])) + + def test_non_array(self): + a = np.arange(4) + + class array_like: + __array_interface__ = a.__array_interface__ + + def __array_wrap__(self, arr): + return self + + # E.g. pandas series survive ufunc calls through array-wrap: + assert isinstance(np.abs(array_like()), array_like) + exp = np.i0(a) + res = np.i0(array_like()) + + assert_array_equal(exp, res) + + def test_complex(self): + a = np.array([0, 1 + 2j]) + with pytest.raises(TypeError, match="i0 not supported for complex values"): + res = i0(a) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestKaiser: + + def test_simple(self): + assert_(np.isfinite(kaiser(1, 1.0))) + assert_almost_equal(kaiser(0, 1.0), + np.array([])) + assert_almost_equal(kaiser(2, 1.0), + np.array([0.78984831, 0.78984831])) + assert_almost_equal(kaiser(5, 1.0), + np.array([0.78984831, 0.94503323, 1., + 0.94503323, 0.78984831])) + assert_almost_equal(kaiser(5, 1.56789), + np.array([0.58285404, 0.88409679, 1., + 0.88409679, 0.58285404])) + + def test_int_beta(self): + kaiser(3, 4) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestMsort: + + def test_simple(self): + A = np.array([[0.44567325, 0.79115165, 0.54900530], + [0.36844147, 0.37325583, 0.96098397], + [0.64864341, 0.52929049, 0.39172155]]) + with pytest.warns(DeprecationWarning, match="msort is deprecated"): + assert_almost_equal( + msort(A), + np.array([[0.36844147, 0.37325583, 0.39172155], + [0.44567325, 0.52929049, 0.54900530], + [0.64864341, 0.79115165, 0.96098397]])) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestMeshgrid: + + def test_simple(self): + [X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7]) + assert_array_equal(X, np.array([[1, 2, 3], + [1, 2, 3], + [1, 2, 3], + [1, 2, 3]])) + assert_array_equal(Y, np.array([[4, 4, 4], + [5, 5, 5], + [6, 6, 6], + [7, 7, 7]])) + + def test_single_input(self): + [X] = meshgrid([1, 2, 3, 4]) + assert_array_equal(X, np.array([1, 2, 3, 4])) + + def test_no_input(self): + args = [] + assert_array_equal([], meshgrid(*args)) + assert_array_equal([], meshgrid(*args, copy=False)) + + def test_indexing(self): + x = [1, 2, 3] + y = [4, 5, 6, 7] + [X, Y] = meshgrid(x, y, indexing='ij') + assert_array_equal(X, np.array([[1, 1, 1, 1], + [2, 2, 2, 2], + [3, 3, 3, 3]])) + assert_array_equal(Y, np.array([[4, 5, 6, 7], + [4, 5, 6, 7], + [4, 5, 6, 7]])) + + # Test expected shapes: + z = [8, 9] + assert_(meshgrid(x, y)[0].shape == (4, 3)) + assert_(meshgrid(x, y, indexing='ij')[0].shape == (3, 4)) + assert_(meshgrid(x, y, z)[0].shape == (4, 3, 2)) + assert_(meshgrid(x, y, z, indexing='ij')[0].shape == (3, 4, 2)) + + assert_raises(ValueError, meshgrid, x, y, indexing='notvalid') + + def test_sparse(self): + [X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7], sparse=True) + assert_array_equal(X, np.array([[1, 2, 3]])) + assert_array_equal(Y, np.array([[4], [5], [6], [7]])) + + def test_invalid_arguments(self): + # Test that meshgrid complains about invalid arguments + # Regression test for issue #4755: + # https://github.com/numpy/numpy/issues/4755 + assert_raises(TypeError, meshgrid, + [1, 2, 3], [4, 5, 6, 7], indices='ij') + + def test_return_type(self): + # Test for appropriate dtype in returned arrays. + # Regression test for issue #5297 + # https://github.com/numpy/numpy/issues/5297 + x = np.arange(0, 10, dtype=np.float32) + y = np.arange(10, 20, dtype=np.float64) + + X, Y = np.meshgrid(x,y) + + assert_(X.dtype == x.dtype) + assert_(Y.dtype == y.dtype) + + # copy + X, Y = np.meshgrid(x,y, copy=True) + + assert_(X.dtype == x.dtype) + assert_(Y.dtype == y.dtype) + + # sparse + X, Y = np.meshgrid(x,y, sparse=True) + + assert_(X.dtype == x.dtype) + assert_(Y.dtype == y.dtype) + + def test_writeback(self): + # Issue 8561 + X = np.array([1.1, 2.2]) + Y = np.array([3.3, 4.4]) + x, y = np.meshgrid(X, Y, sparse=False, copy=True) + + x[0, :] = 0 + assert_equal(x[0, :], 0) + assert_equal(x[1, :], X) + + def test_nd_shape(self): + a, b, c, d, e = np.meshgrid(*([0] * i for i in range(1, 6))) + expected_shape = (2, 1, 3, 4, 5) + assert_equal(a.shape, expected_shape) + assert_equal(b.shape, expected_shape) + assert_equal(c.shape, expected_shape) + assert_equal(d.shape, expected_shape) + assert_equal(e.shape, expected_shape) + + def test_nd_values(self): + a, b, c = np.meshgrid([0], [1, 2], [3, 4, 5]) + assert_equal(a, [[[0, 0, 0]], [[0, 0, 0]]]) + assert_equal(b, [[[1, 1, 1]], [[2, 2, 2]]]) + assert_equal(c, [[[3, 4, 5]], [[3, 4, 5]]]) + + def test_nd_indexing(self): + a, b, c = np.meshgrid([0], [1, 2], [3, 4, 5], indexing='ij') + assert_equal(a, [[[0, 0, 0], [0, 0, 0]]]) + assert_equal(b, [[[1, 1, 1], [2, 2, 2]]]) + assert_equal(c, [[[3, 4, 5], [3, 4, 5]]]) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestPiecewise: + + def test_simple(self): + # Condition is single bool list + x = piecewise([0, 0], [True, False], [1]) + assert_array_equal(x, [1, 0]) + + # List of conditions: single bool list + x = piecewise([0, 0], [[True, False]], [1]) + assert_array_equal(x, [1, 0]) + + # Conditions is single bool array + x = piecewise([0, 0], np.array([True, False]), [1]) + assert_array_equal(x, [1, 0]) + + # Condition is single int array + x = piecewise([0, 0], np.array([1, 0]), [1]) + assert_array_equal(x, [1, 0]) + + # List of conditions: int array + x = piecewise([0, 0], [np.array([1, 0])], [1]) + assert_array_equal(x, [1, 0]) + + x = piecewise([0, 0], [[False, True]], [lambda x:-1]) + assert_array_equal(x, [0, -1]) + + assert_raises_regex(ValueError, '1 or 2 functions are expected', + piecewise, [0, 0], [[False, True]], []) + assert_raises_regex(ValueError, '1 or 2 functions are expected', + piecewise, [0, 0], [[False, True]], [1, 2, 3]) + + def test_two_conditions(self): + x = piecewise([1, 2], [[True, False], [False, True]], [3, 4]) + assert_array_equal(x, [3, 4]) + + def test_scalar_domains_three_conditions(self): + x = piecewise(3, [True, False, False], [4, 2, 0]) + assert_equal(x, 4) + + def test_default(self): + # No value specified for x[1], should be 0 + x = piecewise([1, 2], [True, False], [2]) + assert_array_equal(x, [2, 0]) + + # Should set x[1] to 3 + x = piecewise([1, 2], [True, False], [2, 3]) + assert_array_equal(x, [2, 3]) + + def test_0d(self): + x = np.array(3) + y = piecewise(x, x > 3, [4, 0]) + assert_(y.ndim == 0) + assert_(y == 0) + + x = 5 + y = piecewise(x, [True, False], [1, 0]) + assert_(y.ndim == 0) + assert_(y == 1) + + # With 3 ranges (It was failing, before) + y = piecewise(x, [False, False, True], [1, 2, 3]) + assert_array_equal(y, 3) + + def test_0d_comparison(self): + x = 3 + y = piecewise(x, [x <= 3, x > 3], [4, 0]) # Should succeed. + assert_equal(y, 4) + + # With 3 ranges (It was failing, before) + x = 4 + y = piecewise(x, [x <= 3, (x > 3) * (x <= 5), x > 5], [1, 2, 3]) + assert_array_equal(y, 2) + + assert_raises_regex(ValueError, '2 or 3 functions are expected', + piecewise, x, [x <= 3, x > 3], [1]) + assert_raises_regex(ValueError, '2 or 3 functions are expected', + piecewise, x, [x <= 3, x > 3], [1, 1, 1, 1]) + + def test_0d_0d_condition(self): + x = np.array(3) + c = np.array(x > 3) + y = piecewise(x, [c], [1, 2]) + assert_equal(y, 2) + + def test_multidimensional_extrafunc(self): + x = np.array([[-2.5, -1.5, -0.5], + [0.5, 1.5, 2.5]]) + y = piecewise(x, [x < 0, x >= 2], [-1, 1, 3]) + assert_array_equal(y, np.array([[-1., -1., -1.], + [3., 3., 1.]])) + + def test_subclasses(self): + class subclass(np.ndarray): + pass + x = np.arange(5.).view(subclass) + r = piecewise(x, [x<2., x>=4], [-1., 1., 0.]) + assert_equal(type(r), subclass) + assert_equal(r, [-1., -1., 0., 0., 1.]) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestBincount: + + def test_simple(self): + y = np.bincount(np.arange(4)) + assert_array_equal(y, np.ones(4)) + + def test_simple2(self): + y = np.bincount(np.array([1, 5, 2, 4, 1])) + assert_array_equal(y, np.array([0, 2, 1, 0, 1, 1])) + + def test_simple_weight(self): + x = np.arange(4) + w = np.array([0.2, 0.3, 0.5, 0.1]) + y = np.bincount(x, w) + assert_array_equal(y, w) + + def test_simple_weight2(self): + x = np.array([1, 2, 4, 5, 2]) + w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) + y = np.bincount(x, w) + assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1])) + + def test_with_minlength(self): + x = np.array([0, 1, 0, 1, 1]) + y = np.bincount(x, minlength=3) + assert_array_equal(y, np.array([2, 3, 0])) + x = [] + y = np.bincount(x, minlength=0) + assert_array_equal(y, np.array([])) + + def test_with_minlength_smaller_than_maxvalue(self): + x = np.array([0, 1, 1, 2, 2, 3, 3]) + y = np.bincount(x, minlength=2) + assert_array_equal(y, np.array([1, 2, 2, 2])) + y = np.bincount(x, minlength=0) + assert_array_equal(y, np.array([1, 2, 2, 2])) + + def test_with_minlength_and_weights(self): + x = np.array([1, 2, 4, 5, 2]) + w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) + y = np.bincount(x, w, 8) + assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1, 0, 0])) + + def test_empty(self): + x = np.array([], dtype=int) + y = np.bincount(x) + assert_array_equal(x, y) + + def test_empty_with_minlength(self): + x = np.array([], dtype=int) + y = np.bincount(x, minlength=5) + assert_array_equal(y, np.zeros(5, dtype=int)) + + def test_with_incorrect_minlength(self): + x = np.array([], dtype=int) + assert_raises_regex(TypeError, + "'str' object cannot be interpreted", + lambda: np.bincount(x, minlength="foobar")) + assert_raises_regex(ValueError, + "must not be negative", + lambda: np.bincount(x, minlength=-1)) + + x = np.arange(5) + assert_raises_regex(TypeError, + "'str' object cannot be interpreted", + lambda: np.bincount(x, minlength="foobar")) + assert_raises_regex(ValueError, + "must not be negative", + lambda: np.bincount(x, minlength=-1)) + + @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") + def test_dtype_reference_leaks(self): + # gh-6805 + intp_refcount = sys.getrefcount(np.dtype(np.intp)) + double_refcount = sys.getrefcount(np.dtype(np.double)) + + for j in range(10): + np.bincount([1, 2, 3]) + assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) + assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount) + + for j in range(10): + np.bincount([1, 2, 3], [4, 5, 6]) + assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) + assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount) + + @pytest.mark.parametrize("vals", [[[2, 2]], 2]) + def test_error_not_1d(self, vals): + # Test that values has to be 1-D (both as array and nested list) + vals_arr = np.asarray(vals) + with assert_raises(ValueError): + np.bincount(vals_arr) + with assert_raises(ValueError): + np.bincount(vals) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestInterp: + + def test_exceptions(self): + assert_raises(ValueError, interp, 0, [], []) + assert_raises(ValueError, interp, 0, [0], [1, 2]) + assert_raises(ValueError, interp, 0, [0, 1], [1, 2], period=0) + assert_raises(ValueError, interp, 0, [], [], period=360) + assert_raises(ValueError, interp, 0, [0], [1, 2], period=360) + + def test_basic(self): + x = np.linspace(0, 1, 5) + y = np.linspace(0, 1, 5) + x0 = np.linspace(0, 1, 50) + assert_almost_equal(np.interp(x0, x, y), x0) + + def test_right_left_behavior(self): + # Needs range of sizes to test different code paths. + # size ==1 is special cased, 1 < size < 5 is linear search, and + # size >= 5 goes through local search and possibly binary search. + for size in range(1, 10): + xp = np.arange(size, dtype=np.double) + yp = np.ones(size, dtype=np.double) + incpts = np.array([-1, 0, size - 1, size], dtype=np.double) + decpts = incpts[::-1] + + incres = interp(incpts, xp, yp) + decres = interp(decpts, xp, yp) + inctgt = np.array([1, 1, 1, 1], dtype=float) + dectgt = inctgt[::-1] + assert_equal(incres, inctgt) + assert_equal(decres, dectgt) + + incres = interp(incpts, xp, yp, left=0) + decres = interp(decpts, xp, yp, left=0) + inctgt = np.array([0, 1, 1, 1], dtype=float) + dectgt = inctgt[::-1] + assert_equal(incres, inctgt) + assert_equal(decres, dectgt) + + incres = interp(incpts, xp, yp, right=2) + decres = interp(decpts, xp, yp, right=2) + inctgt = np.array([1, 1, 1, 2], dtype=float) + dectgt = inctgt[::-1] + assert_equal(incres, inctgt) + assert_equal(decres, dectgt) + + incres = interp(incpts, xp, yp, left=0, right=2) + decres = interp(decpts, xp, yp, left=0, right=2) + inctgt = np.array([0, 1, 1, 2], dtype=float) + dectgt = inctgt[::-1] + assert_equal(incres, inctgt) + assert_equal(decres, dectgt) + + def test_scalar_interpolation_point(self): + x = np.linspace(0, 1, 5) + y = np.linspace(0, 1, 5) + x0 = 0 + assert_almost_equal(np.interp(x0, x, y), x0) + x0 = .3 + assert_almost_equal(np.interp(x0, x, y), x0) + x0 = np.float32(.3) + assert_almost_equal(np.interp(x0, x, y), x0) + x0 = np.float64(.3) + assert_almost_equal(np.interp(x0, x, y), x0) + x0 = np.nan + assert_almost_equal(np.interp(x0, x, y), x0) + + def test_non_finite_behavior_exact_x(self): + x = [1, 2, 2.5, 3, 4] + xp = [1, 2, 3, 4] + fp = [1, 2, np.inf, 4] + assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.inf, np.inf, 4]) + fp = [1, 2, np.nan, 4] + assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.nan, np.nan, 4]) + + @pytest.fixture(params=[ + lambda x: np.float_(x), + lambda x: _make_complex(x, 0), + lambda x: _make_complex(0, x), + lambda x: _make_complex(x, np.multiply(x, -2)) + ], ids=[ + 'real', + 'complex-real', + 'complex-imag', + 'complex-both' + ]) + def sc(self, request): + """ scale function used by the below tests """ + return request.param + + def test_non_finite_any_nan(self, sc): + """ test that nans are propagated """ + assert_equal(np.interp(0.5, [np.nan, 1], sc([ 0, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, np.nan], sc([ 0, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([np.nan, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([ 0, np.nan])), sc(np.nan)) + + def test_non_finite_inf(self, sc): + """ Test that interp between opposite infs gives nan """ + assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 0, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([-np.inf, +np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([+np.inf, -np.inf])), sc(np.nan)) + + # unless the y values are equal + assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 10, 10])), sc(10)) + + def test_non_finite_half_inf_xf(self, sc): + """ Test that interp where both axes have a bound at inf gives nan """ + assert_equal(np.interp(0.5, [-np.inf, 1], sc([-np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [-np.inf, 1], sc([+np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, -np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, +np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([-np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([+np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, -np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, +np.inf])), sc(np.nan)) + + def test_non_finite_half_inf_x(self, sc): + """ Test interp where the x axis has a bound at inf """ + assert_equal(np.interp(0.5, [-np.inf, -np.inf], sc([0, 10])), sc(10)) + assert_equal(np.interp(0.5, [-np.inf, 1 ], sc([0, 10])), sc(10)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([0, 10])), sc(0)) + assert_equal(np.interp(0.5, [+np.inf, +np.inf], sc([0, 10])), sc(0)) + + def test_non_finite_half_inf_f(self, sc): + """ Test interp where the f axis has a bound at inf """ + assert_equal(np.interp(0.5, [0, 1], sc([ 0, -np.inf])), sc(-np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([ 0, +np.inf])), sc(+np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, 10])), sc(-np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, 10])), sc(+np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, -np.inf])), sc(-np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, +np.inf])), sc(+np.inf)) + + def test_complex_interp(self): + # test complex interpolation + x = np.linspace(0, 1, 5) + y = np.linspace(0, 1, 5) + (1 + np.linspace(0, 1, 5))*1.0j + x0 = 0.3 + y0 = x0 + (1+x0)*1.0j + assert_almost_equal(np.interp(x0, x, y), y0) + # test complex left and right + x0 = -1 + left = 2 + 3.0j + assert_almost_equal(np.interp(x0, x, y, left=left), left) + x0 = 2.0 + right = 2 + 3.0j + assert_almost_equal(np.interp(x0, x, y, right=right), right) + # test complex non finite + x = [1, 2, 2.5, 3, 4] + xp = [1, 2, 3, 4] + fp = [1, 2+1j, np.inf, 4] + y = [1, 2+1j, np.inf+0.5j, np.inf, 4] + assert_almost_equal(np.interp(x, xp, fp), y) + # test complex periodic + x = [-180, -170, -185, 185, -10, -5, 0, 365] + xp = [190, -190, 350, -350] + fp = [5+1.0j, 10+2j, 3+3j, 4+4j] + y = [7.5+1.5j, 5.+1.0j, 8.75+1.75j, 6.25+1.25j, 3.+3j, 3.25+3.25j, + 3.5+3.5j, 3.75+3.75j] + assert_almost_equal(np.interp(x, xp, fp, period=360), y) + + def test_zero_dimensional_interpolation_point(self): + x = np.linspace(0, 1, 5) + y = np.linspace(0, 1, 5) + x0 = np.array(.3) + assert_almost_equal(np.interp(x0, x, y), x0) + + xp = np.array([0, 2, 4]) + fp = np.array([1, -1, 1]) + + actual = np.interp(np.array(1), xp, fp) + assert_equal(actual, 0) + assert_(isinstance(actual, np.float64)) + + actual = np.interp(np.array(4.5), xp, fp, period=4) + assert_equal(actual, 0.5) + assert_(isinstance(actual, np.float64)) + + def test_if_len_x_is_small(self): + xp = np.arange(0, 10, 0.0001) + fp = np.sin(xp) + assert_almost_equal(np.interp(np.pi, xp, fp), 0.0) + + def test_period(self): + x = [-180, -170, -185, 185, -10, -5, 0, 365] + xp = [190, -190, 350, -350] + fp = [5, 10, 3, 4] + y = [7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75] + assert_almost_equal(np.interp(x, xp, fp, period=360), y) + x = np.array(x, order='F').reshape(2, -1) + y = np.array(y, order='C').reshape(2, -1) + assert_almost_equal(np.interp(x, xp, fp, period=360), y) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestPercentile: + + def test_basic(self): + x = np.arange(8) * 0.5 + assert_equal(np.percentile(x, 0), 0.) + assert_equal(np.percentile(x, 100), 3.5) + assert_equal(np.percentile(x, 50), 1.75) + x[1] = np.nan + assert_equal(np.percentile(x, 0), np.nan) + assert_equal(np.percentile(x, 0, method='nearest'), np.nan) + + def test_fraction(self): + x = [Fraction(i, 2) for i in range(8)] + + p = np.percentile(x, Fraction(0)) + assert_equal(p, Fraction(0)) + assert_equal(type(p), Fraction) + + p = np.percentile(x, Fraction(100)) + assert_equal(p, Fraction(7, 2)) + assert_equal(type(p), Fraction) + + p = np.percentile(x, Fraction(50)) + assert_equal(p, Fraction(7, 4)) + assert_equal(type(p), Fraction) + + p = np.percentile(x, [Fraction(50)]) + assert_equal(p, np.array([Fraction(7, 4)])) + assert_equal(type(p), np.ndarray) + + def test_api(self): + d = np.ones(5) + np.percentile(d, 5, None, None, False) + np.percentile(d, 5, None, None, False, 'linear') + o = np.ones((1,)) + np.percentile(d, 5, None, o, False, 'linear') + + def test_complex(self): + arr_c = np.array([0.5+3.0j, 2.1+0.5j, 1.6+2.3j], dtype='G') + assert_raises(TypeError, np.percentile, arr_c, 0.5) + arr_c = np.array([0.5+3.0j, 2.1+0.5j, 1.6+2.3j], dtype='D') + assert_raises(TypeError, np.percentile, arr_c, 0.5) + arr_c = np.array([0.5+3.0j, 2.1+0.5j, 1.6+2.3j], dtype='F') + assert_raises(TypeError, np.percentile, arr_c, 0.5) + + def test_2D(self): + x = np.array([[1, 1, 1], + [1, 1, 1], + [4, 4, 3], + [1, 1, 1], + [1, 1, 1]]) + assert_array_equal(np.percentile(x, 50, axis=0), [1, 1, 1]) + + @pytest.mark.parametrize("dtype", np.typecodes["Float"]) + def test_linear_nan_1D(self, dtype): + # METHOD 1 of H&F + arr = np.asarray([15.0, np.NAN, 35.0, 40.0, 50.0], dtype=dtype) + res = np.percentile( + arr, + 40.0, + method="linear") + np.testing.assert_equal(res, np.NAN) + np.testing.assert_equal(res.dtype, arr.dtype) + + H_F_TYPE_CODES = [(int_type, np.float64) + for int_type in np.typecodes["AllInteger"] + ] + [(np.float16, np.float16), + (np.float32, np.float32), + (np.float64, np.float64), + ] + + @pytest.mark.parametrize(["input_dtype", "expected_dtype"], H_F_TYPE_CODES) + @pytest.mark.parametrize(["method", "expected"], + [("inverted_cdf", 20), + ("averaged_inverted_cdf", 27.5), + ("closest_observation", 20), + ("interpolated_inverted_cdf", 20), + ("hazen", 27.5), + ("weibull", 26), + ("linear", 29), + ("median_unbiased", 27), + ("normal_unbiased", 27.125), + ]) + def test_linear_interpolation(self, + method, + expected, + input_dtype, + expected_dtype): + expected_dtype = np.dtype(expected_dtype) + if np._get_promotion_state() == "legacy": + expected_dtype = np.promote_types(expected_dtype, np.float64) + + arr = np.asarray([15.0, 20.0, 35.0, 40.0, 50.0], dtype=input_dtype) + actual = np.percentile(arr, 40.0, method=method) + + np.testing.assert_almost_equal( + actual, expected_dtype.type(expected), 14) + + if method in ["inverted_cdf", "closest_observation"]: + if input_dtype == "O": + np.testing.assert_equal(np.asarray(actual).dtype, np.float64) + else: + np.testing.assert_equal(np.asarray(actual).dtype, + np.dtype(input_dtype)) + else: + np.testing.assert_equal(np.asarray(actual).dtype, + np.dtype(expected_dtype)) + + TYPE_CODES = np.typecodes["AllInteger"] + np.typecodes["Float"] + "O" + + @pytest.mark.parametrize("dtype", TYPE_CODES) + def test_lower_higher(self, dtype): + assert_equal(np.percentile(np.arange(10, dtype=dtype), 50, + method='lower'), 4) + assert_equal(np.percentile(np.arange(10, dtype=dtype), 50, + method='higher'), 5) + + @pytest.mark.parametrize("dtype", TYPE_CODES) + def test_midpoint(self, dtype): + assert_equal(np.percentile(np.arange(10, dtype=dtype), 51, + method='midpoint'), 4.5) + assert_equal(np.percentile(np.arange(9, dtype=dtype) + 1, 50, + method='midpoint'), 5) + assert_equal(np.percentile(np.arange(11, dtype=dtype), 51, + method='midpoint'), 5.5) + assert_equal(np.percentile(np.arange(11, dtype=dtype), 50, + method='midpoint'), 5) + + @pytest.mark.parametrize("dtype", TYPE_CODES) + def test_nearest(self, dtype): + assert_equal(np.percentile(np.arange(10, dtype=dtype), 51, + method='nearest'), 5) + assert_equal(np.percentile(np.arange(10, dtype=dtype), 49, + method='nearest'), 4) + + def test_linear_interpolation_extrapolation(self): + arr = np.random.rand(5) + + actual = np.percentile(arr, 100) + np.testing.assert_equal(actual, arr.max()) + + actual = np.percentile(arr, 0) + np.testing.assert_equal(actual, arr.min()) + + def test_sequence(self): + x = np.arange(8) * 0.5 + assert_equal(np.percentile(x, [0, 100, 50]), [0, 3.5, 1.75]) + + def test_axis(self): + x = np.arange(12).reshape(3, 4) + + assert_equal(np.percentile(x, (25, 50, 100)), [2.75, 5.5, 11.0]) + + r0 = [[2, 3, 4, 5], [4, 5, 6, 7], [8, 9, 10, 11]] + assert_equal(np.percentile(x, (25, 50, 100), axis=0), r0) + + r1 = [[0.75, 1.5, 3], [4.75, 5.5, 7], [8.75, 9.5, 11]] + assert_equal(np.percentile(x, (25, 50, 100), axis=1), np.array(r1).T) + + # ensure qth axis is always first as with np.array(old_percentile(..)) + x = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6) + assert_equal(np.percentile(x, (25, 50)).shape, (2,)) + assert_equal(np.percentile(x, (25, 50, 75)).shape, (3,)) + assert_equal(np.percentile(x, (25, 50), axis=0).shape, (2, 4, 5, 6)) + assert_equal(np.percentile(x, (25, 50), axis=1).shape, (2, 3, 5, 6)) + assert_equal(np.percentile(x, (25, 50), axis=2).shape, (2, 3, 4, 6)) + assert_equal(np.percentile(x, (25, 50), axis=3).shape, (2, 3, 4, 5)) + assert_equal( + np.percentile(x, (25, 50, 75), axis=1).shape, (3, 3, 5, 6)) + assert_equal(np.percentile(x, (25, 50), + method="higher").shape, (2,)) + assert_equal(np.percentile(x, (25, 50, 75), + method="higher").shape, (3,)) + assert_equal(np.percentile(x, (25, 50), axis=0, + method="higher").shape, (2, 4, 5, 6)) + assert_equal(np.percentile(x, (25, 50), axis=1, + method="higher").shape, (2, 3, 5, 6)) + assert_equal(np.percentile(x, (25, 50), axis=2, + method="higher").shape, (2, 3, 4, 6)) + assert_equal(np.percentile(x, (25, 50), axis=3, + method="higher").shape, (2, 3, 4, 5)) + assert_equal(np.percentile(x, (25, 50, 75), axis=1, + method="higher").shape, (3, 3, 5, 6)) + + def test_scalar_q(self): + # test for no empty dimensions for compatibility with old percentile + x = np.arange(12).reshape(3, 4) + assert_equal(np.percentile(x, 50), 5.5) + assert_(np.isscalar(np.percentile(x, 50))) + r0 = np.array([4., 5., 6., 7.]) + assert_equal(np.percentile(x, 50, axis=0), r0) + assert_equal(np.percentile(x, 50, axis=0).shape, r0.shape) + r1 = np.array([1.5, 5.5, 9.5]) + assert_almost_equal(np.percentile(x, 50, axis=1), r1) + assert_equal(np.percentile(x, 50, axis=1).shape, r1.shape) + + out = np.empty(1) + assert_equal(np.percentile(x, 50, out=out), 5.5) + assert_equal(out, 5.5) + out = np.empty(4) + assert_equal(np.percentile(x, 50, axis=0, out=out), r0) + assert_equal(out, r0) + out = np.empty(3) + assert_equal(np.percentile(x, 50, axis=1, out=out), r1) + assert_equal(out, r1) + + # test for no empty dimensions for compatibility with old percentile + x = np.arange(12).reshape(3, 4) + assert_equal(np.percentile(x, 50, method='lower'), 5.) + assert_(np.isscalar(np.percentile(x, 50))) + r0 = np.array([4., 5., 6., 7.]) + c0 = np.percentile(x, 50, method='lower', axis=0) + assert_equal(c0, r0) + assert_equal(c0.shape, r0.shape) + r1 = np.array([1., 5., 9.]) + c1 = np.percentile(x, 50, method='lower', axis=1) + assert_almost_equal(c1, r1) + assert_equal(c1.shape, r1.shape) + + out = np.empty((), dtype=x.dtype) + c = np.percentile(x, 50, method='lower', out=out) + assert_equal(c, 5) + assert_equal(out, 5) + out = np.empty(4, dtype=x.dtype) + c = np.percentile(x, 50, method='lower', axis=0, out=out) + assert_equal(c, r0) + assert_equal(out, r0) + out = np.empty(3, dtype=x.dtype) + c = np.percentile(x, 50, method='lower', axis=1, out=out) + assert_equal(c, r1) + assert_equal(out, r1) + + def test_exception(self): + assert_raises(ValueError, np.percentile, [1, 2], 56, + method='foobar') + assert_raises(ValueError, np.percentile, [1], 101) + assert_raises(ValueError, np.percentile, [1], -1) + assert_raises(ValueError, np.percentile, [1], list(range(50)) + [101]) + assert_raises(ValueError, np.percentile, [1], list(range(50)) + [-0.1]) + + def test_percentile_list(self): + assert_equal(np.percentile([1, 2, 3], 0), 1) + + def test_percentile_out(self): + x = np.array([1, 2, 3]) + y = np.zeros((3,)) + p = (1, 2, 3) + np.percentile(x, p, out=y) + assert_equal(np.percentile(x, p), y) + + x = np.array([[1, 2, 3], + [4, 5, 6]]) + + y = np.zeros((3, 3)) + np.percentile(x, p, axis=0, out=y) + assert_equal(np.percentile(x, p, axis=0), y) + + y = np.zeros((3, 2)) + np.percentile(x, p, axis=1, out=y) + assert_equal(np.percentile(x, p, axis=1), y) + + x = np.arange(12).reshape(3, 4) + # q.dim > 1, float + r0 = np.array([[2., 3., 4., 5.], [4., 5., 6., 7.]]) + out = np.empty((2, 4)) + assert_equal(np.percentile(x, (25, 50), axis=0, out=out), r0) + assert_equal(out, r0) + r1 = np.array([[0.75, 4.75, 8.75], [1.5, 5.5, 9.5]]) + out = np.empty((2, 3)) + assert_equal(np.percentile(x, (25, 50), axis=1, out=out), r1) + assert_equal(out, r1) + + # q.dim > 1, int + r0 = np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) + out = np.empty((2, 4), dtype=x.dtype) + c = np.percentile(x, (25, 50), method='lower', axis=0, out=out) + assert_equal(c, r0) + assert_equal(out, r0) + r1 = np.array([[0, 4, 8], [1, 5, 9]]) + out = np.empty((2, 3), dtype=x.dtype) + c = np.percentile(x, (25, 50), method='lower', axis=1, out=out) + assert_equal(c, r1) + assert_equal(out, r1) + + def test_percentile_empty_dim(self): + # empty dims are preserved + d = np.arange(11 * 2).reshape(11, 1, 2, 1) + assert_array_equal(np.percentile(d, 50, axis=0).shape, (1, 2, 1)) + assert_array_equal(np.percentile(d, 50, axis=1).shape, (11, 2, 1)) + assert_array_equal(np.percentile(d, 50, axis=2).shape, (11, 1, 1)) + assert_array_equal(np.percentile(d, 50, axis=3).shape, (11, 1, 2)) + assert_array_equal(np.percentile(d, 50, axis=-1).shape, (11, 1, 2)) + assert_array_equal(np.percentile(d, 50, axis=-2).shape, (11, 1, 1)) + assert_array_equal(np.percentile(d, 50, axis=-3).shape, (11, 2, 1)) + assert_array_equal(np.percentile(d, 50, axis=-4).shape, (1, 2, 1)) + + assert_array_equal(np.percentile(d, 50, axis=2, + method='midpoint').shape, + (11, 1, 1)) + assert_array_equal(np.percentile(d, 50, axis=-2, + method='midpoint').shape, + (11, 1, 1)) + + assert_array_equal(np.array(np.percentile(d, [10, 50], axis=0)).shape, + (2, 1, 2, 1)) + assert_array_equal(np.array(np.percentile(d, [10, 50], axis=1)).shape, + (2, 11, 2, 1)) + assert_array_equal(np.array(np.percentile(d, [10, 50], axis=2)).shape, + (2, 11, 1, 1)) + assert_array_equal(np.array(np.percentile(d, [10, 50], axis=3)).shape, + (2, 11, 1, 2)) + + def test_percentile_no_overwrite(self): + a = np.array([2, 3, 4, 1]) + np.percentile(a, [50], overwrite_input=False) + assert_equal(a, np.array([2, 3, 4, 1])) + + a = np.array([2, 3, 4, 1]) + np.percentile(a, [50]) + assert_equal(a, np.array([2, 3, 4, 1])) + + def test_no_p_overwrite(self): + p = np.linspace(0., 100., num=5) + np.percentile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, np.linspace(0., 100., num=5)) + p = np.linspace(0., 100., num=5).tolist() + np.percentile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, np.linspace(0., 100., num=5).tolist()) + + def test_percentile_overwrite(self): + a = np.array([2, 3, 4, 1]) + b = np.percentile(a, [50], overwrite_input=True) + assert_equal(b, np.array([2.5])) + + b = np.percentile([2, 3, 4, 1], [50], overwrite_input=True) + assert_equal(b, np.array([2.5])) + + def test_extended_axis(self): + o = np.random.normal(size=(71, 23)) + x = np.dstack([o] * 10) + assert_equal(np.percentile(x, 30, axis=(0, 1)), np.percentile(o, 30)) + x = np.moveaxis(x, -1, 0) + assert_equal(np.percentile(x, 30, axis=(-2, -1)), np.percentile(o, 30)) + x = x.swapaxes(0, 1).copy() + assert_equal(np.percentile(x, 30, axis=(0, -1)), np.percentile(o, 30)) + x = x.swapaxes(0, 1).copy() + + assert_equal(np.percentile(x, [25, 60], axis=(0, 1, 2)), + np.percentile(x, [25, 60], axis=None)) + assert_equal(np.percentile(x, [25, 60], axis=(0,)), + np.percentile(x, [25, 60], axis=0)) + + d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11)) + np.random.shuffle(d.ravel()) + assert_equal(np.percentile(d, 25, axis=(0, 1, 2))[0], + np.percentile(d[:,:,:, 0].flatten(), 25)) + assert_equal(np.percentile(d, [10, 90], axis=(0, 1, 3))[:, 1], + np.percentile(d[:,:, 1,:].flatten(), [10, 90])) + assert_equal(np.percentile(d, 25, axis=(3, 1, -4))[2], + np.percentile(d[:,:, 2,:].flatten(), 25)) + assert_equal(np.percentile(d, 25, axis=(3, 1, 2))[2], + np.percentile(d[2,:,:,:].flatten(), 25)) + assert_equal(np.percentile(d, 25, axis=(3, 2))[2, 1], + np.percentile(d[2, 1,:,:].flatten(), 25)) + assert_equal(np.percentile(d, 25, axis=(1, -2))[2, 1], + np.percentile(d[2,:,:, 1].flatten(), 25)) + assert_equal(np.percentile(d, 25, axis=(1, 3))[2, 2], + np.percentile(d[2,:, 2,:].flatten(), 25)) + + def test_extended_axis_invalid(self): + d = np.ones((3, 5, 7, 11)) + assert_raises(np.AxisError, np.percentile, d, axis=-5, q=25) + assert_raises(np.AxisError, np.percentile, d, axis=(0, -5), q=25) + assert_raises(np.AxisError, np.percentile, d, axis=4, q=25) + assert_raises(np.AxisError, np.percentile, d, axis=(0, 4), q=25) + # each of these refers to the same axis twice + assert_raises(ValueError, np.percentile, d, axis=(1, 1), q=25) + assert_raises(ValueError, np.percentile, d, axis=(-1, -1), q=25) + assert_raises(ValueError, np.percentile, d, axis=(3, -1), q=25) + + def test_keepdims(self): + d = np.ones((3, 5, 7, 11)) + assert_equal(np.percentile(d, 7, axis=None, keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.percentile(d, 7, axis=(0, 1), keepdims=True).shape, + (1, 1, 7, 11)) + assert_equal(np.percentile(d, 7, axis=(0, 3), keepdims=True).shape, + (1, 5, 7, 1)) + assert_equal(np.percentile(d, 7, axis=(1,), keepdims=True).shape, + (3, 1, 7, 11)) + assert_equal(np.percentile(d, 7, (0, 1, 2, 3), keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.percentile(d, 7, axis=(0, 1, 3), keepdims=True).shape, + (1, 1, 7, 1)) + + assert_equal(np.percentile(d, [1, 7], axis=(0, 1, 3), + keepdims=True).shape, (2, 1, 1, 7, 1)) + assert_equal(np.percentile(d, [1, 7], axis=(0, 3), + keepdims=True).shape, (2, 1, 5, 7, 1)) + + @pytest.mark.parametrize('q', [7, [1, 7]]) + @pytest.mark.parametrize( + argnames='axis', + argvalues=[ + None, + 1, + (1,), + (0, 1), + (-3, -1), + ] + ) + def test_keepdims_out(self, q, axis): + d = np.ones((3, 5, 7, 11)) + if axis is None: + shape_out = (1,) * d.ndim + else: + axis_norm = normalize_axis_tuple(axis, d.ndim) + shape_out = tuple( + 1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) + shape_out = np.shape(q) + shape_out + + out = np.empty(shape_out) + result = np.percentile(d, q, axis=axis, keepdims=True, out=out) + assert result is out + assert_equal(result.shape, shape_out) + + def test_out(self): + o = np.zeros((4,)) + d = np.ones((3, 4)) + assert_equal(np.percentile(d, 0, 0, out=o), o) + assert_equal(np.percentile(d, 0, 0, method='nearest', out=o), o) + o = np.zeros((3,)) + assert_equal(np.percentile(d, 1, 1, out=o), o) + assert_equal(np.percentile(d, 1, 1, method='nearest', out=o), o) + + o = np.zeros(()) + assert_equal(np.percentile(d, 2, out=o), o) + assert_equal(np.percentile(d, 2, method='nearest', out=o), o) + + def test_out_nan(self): + with warnings.catch_warnings(record=True): + warnings.filterwarnings('always', '', RuntimeWarning) + o = np.zeros((4,)) + d = np.ones((3, 4)) + d[2, 1] = np.nan + assert_equal(np.percentile(d, 0, 0, out=o), o) + assert_equal( + np.percentile(d, 0, 0, method='nearest', out=o), o) + o = np.zeros((3,)) + assert_equal(np.percentile(d, 1, 1, out=o), o) + assert_equal( + np.percentile(d, 1, 1, method='nearest', out=o), o) + o = np.zeros(()) + assert_equal(np.percentile(d, 1, out=o), o) + assert_equal( + np.percentile(d, 1, method='nearest', out=o), o) + + def test_nan_behavior(self): + a = np.arange(24, dtype=float) + a[2] = np.nan + assert_equal(np.percentile(a, 0.3), np.nan) + assert_equal(np.percentile(a, 0.3, axis=0), np.nan) + assert_equal(np.percentile(a, [0.3, 0.6], axis=0), + np.array([np.nan] * 2)) + + a = np.arange(24, dtype=float).reshape(2, 3, 4) + a[1, 2, 3] = np.nan + a[1, 1, 2] = np.nan + + # no axis + assert_equal(np.percentile(a, 0.3), np.nan) + assert_equal(np.percentile(a, 0.3).ndim, 0) + + # axis0 zerod + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 0) + b[2, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.percentile(a, 0.3, 0), b) + + # axis0 not zerod + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), + [0.3, 0.6], 0) + b[:, 2, 3] = np.nan + b[:, 1, 2] = np.nan + assert_equal(np.percentile(a, [0.3, 0.6], 0), b) + + # axis1 zerod + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 1) + b[1, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.percentile(a, 0.3, 1), b) + # axis1 not zerod + b = np.percentile( + np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 1) + b[:, 1, 3] = np.nan + b[:, 1, 2] = np.nan + assert_equal(np.percentile(a, [0.3, 0.6], 1), b) + + # axis02 zerod + b = np.percentile( + np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, (0, 2)) + b[1] = np.nan + b[2] = np.nan + assert_equal(np.percentile(a, 0.3, (0, 2)), b) + # axis02 not zerod + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), + [0.3, 0.6], (0, 2)) + b[:, 1] = np.nan + b[:, 2] = np.nan + assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b) + # axis02 not zerod with method='nearest' + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), + [0.3, 0.6], (0, 2), method='nearest') + b[:, 1] = np.nan + b[:, 2] = np.nan + assert_equal(np.percentile( + a, [0.3, 0.6], (0, 2), method='nearest'), b) + + def test_nan_q(self): + # GH18830 + with pytest.raises(ValueError, match="Percentiles must be in"): + np.percentile([1, 2, 3, 4.0], np.nan) + with pytest.raises(ValueError, match="Percentiles must be in"): + np.percentile([1, 2, 3, 4.0], [np.nan]) + q = np.linspace(1.0, 99.0, 16) + q[0] = np.nan + with pytest.raises(ValueError, match="Percentiles must be in"): + np.percentile([1, 2, 3, 4.0], q) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestQuantile: + # most of this is already tested by TestPercentile + + def test_max_ulp(self): + x = [0.0, 0.2, 0.4] + a = np.quantile(x, 0.45) + # The default linear method would result in 0 + 0.2 * (0.45/2) = 0.18. + # 0.18 is not exactly representable and the formula leads to a 1 ULP + # different result. Ensure it is this exact within 1 ULP, see gh-20331. + np.testing.assert_array_max_ulp(a, 0.18, maxulp=1) + + def test_basic(self): + x = np.arange(8) * 0.5 + assert_equal(np.quantile(x, 0), 0.) + assert_equal(np.quantile(x, 1), 3.5) + assert_equal(np.quantile(x, 0.5), 1.75) + + def test_correct_quantile_value(self): + a = np.array([True]) + tf_quant = np.quantile(True, False) + assert_equal(tf_quant, a[0]) + assert_equal(type(tf_quant), a.dtype) + a = np.array([False, True, True]) + quant_res = np.quantile(a, a) + assert_array_equal(quant_res, a) + assert_equal(quant_res.dtype, a.dtype) + + def test_fraction(self): + # fractional input, integral quantile + x = [Fraction(i, 2) for i in range(8)] + q = np.quantile(x, 0) + assert_equal(q, 0) + assert_equal(type(q), Fraction) + + q = np.quantile(x, 1) + assert_equal(q, Fraction(7, 2)) + assert_equal(type(q), Fraction) + + q = np.quantile(x, Fraction(1, 2)) + assert_equal(q, Fraction(7, 4)) + assert_equal(type(q), Fraction) + + q = np.quantile(x, [Fraction(1, 2)]) + assert_equal(q, np.array([Fraction(7, 4)])) + assert_equal(type(q), np.ndarray) + + q = np.quantile(x, [[Fraction(1, 2)]]) + assert_equal(q, np.array([[Fraction(7, 4)]])) + assert_equal(type(q), np.ndarray) + + # repeat with integral input but fractional quantile + x = np.arange(8) + assert_equal(np.quantile(x, Fraction(1, 2)), Fraction(7, 2)) + + def test_complex(self): + #See gh-22652 + arr_c = np.array([0.5+3.0j, 2.1+0.5j, 1.6+2.3j], dtype='G') + assert_raises(TypeError, np.quantile, arr_c, 0.5) + arr_c = np.array([0.5+3.0j, 2.1+0.5j, 1.6+2.3j], dtype='D') + assert_raises(TypeError, np.quantile, arr_c, 0.5) + arr_c = np.array([0.5+3.0j, 2.1+0.5j, 1.6+2.3j], dtype='F') + assert_raises(TypeError, np.quantile, arr_c, 0.5) + + def test_no_p_overwrite(self): + # this is worth retesting, because quantile does not make a copy + p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) + p = p0.copy() + np.quantile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, p0) + + p0 = p0.tolist() + p = p.tolist() + np.quantile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, p0) + + @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"]) + def test_quantile_preserve_int_type(self, dtype): + res = np.quantile(np.array([1, 2], dtype=dtype), [0.5], + method="nearest") + assert res.dtype == dtype + + @pytest.mark.parametrize("method", + ['inverted_cdf', 'averaged_inverted_cdf', 'closest_observation', + 'interpolated_inverted_cdf', 'hazen', 'weibull', 'linear', + 'median_unbiased', 'normal_unbiased', + 'nearest', 'lower', 'higher', 'midpoint']) + def test_quantile_monotonic(self, method): + # GH 14685 + # test that the return value of quantile is monotonic if p0 is ordered + # Also tests that the boundary values are not mishandled. + p0 = np.linspace(0, 1, 101) + quantile = np.quantile(np.array([0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 1, 1, 9, 9, 9, + 8, 8, 7]) * 0.1, p0, method=method) + assert_equal(np.sort(quantile), quantile) + + # Also test one where the number of data points is clearly divisible: + quantile = np.quantile([0., 1., 2., 3.], p0, method=method) + assert_equal(np.sort(quantile), quantile) + + @pytest.mark.skip(reason='no hypothesis') + @hypothesis.given( + arr=arrays(dtype=np.float64, + shape=st.integers(min_value=3, max_value=1000), + elements=st.floats(allow_infinity=False, allow_nan=False, + min_value=-1e300, max_value=1e300))) + def test_quantile_monotonic_hypo(self, arr): + p0 = np.arange(0, 1, 0.01) + quantile = np.quantile(arr, p0) + assert_equal(np.sort(quantile), quantile) + + def test_quantile_scalar_nan(self): + a = np.array([[10., 7., 4.], [3., 2., 1.]]) + a[0][1] = np.nan + actual = np.quantile(a, 0.5) + assert np.isscalar(actual) + assert_equal(np.quantile(a, 0.5), np.nan) + + +@pytest.mark.skip(reason='no hypothesis') +class TestLerp: + @hypothesis.given(t0=st.floats(allow_nan=False, allow_infinity=False, + min_value=0, max_value=1), + t1=st.floats(allow_nan=False, allow_infinity=False, + min_value=0, max_value=1), + a = st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300), + b = st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300)) + def test_linear_interpolation_formula_monotonic(self, t0, t1, a, b): + l0 = nfb._lerp(a, b, t0) + l1 = nfb._lerp(a, b, t1) + if t0 == t1 or a == b: + assert l0 == l1 # uninteresting + elif (t0 < t1) == (a < b): + assert l0 <= l1 + else: + assert l0 >= l1 + + @hypothesis.given(t=st.floats(allow_nan=False, allow_infinity=False, + min_value=0, max_value=1), + a=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300), + b=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300)) + def test_linear_interpolation_formula_bounded(self, t, a, b): + if a <= b: + assert a <= nfb._lerp(a, b, t) <= b + else: + assert b <= nfb._lerp(a, b, t) <= a + + @hypothesis.given(t=st.floats(allow_nan=False, allow_infinity=False, + min_value=0, max_value=1), + a=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300), + b=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300)) + def test_linear_interpolation_formula_symmetric(self, t, a, b): + # double subtraction is needed to remove the extra precision of t < 0.5 + left = nfb._lerp(a, b, 1 - (1 - t)) + right = nfb._lerp(b, a, 1 - t) + assert_allclose(left, right) + + def test_linear_interpolation_formula_0d_inputs(self): + a = np.array(2) + b = np.array(5) + t = np.array(0.2) + assert nfb._lerp(a, b, t) == 2.6 + + +@pytest.mark.xfail(reason='TODO: implement') +class TestMedian: + + def test_basic(self): + a0 = np.array(1) + a1 = np.arange(2) + a2 = np.arange(6).reshape(2, 3) + assert_equal(np.median(a0), 1) + assert_allclose(np.median(a1), 0.5) + assert_allclose(np.median(a2), 2.5) + assert_allclose(np.median(a2, axis=0), [1.5, 2.5, 3.5]) + assert_equal(np.median(a2, axis=1), [1, 4]) + assert_allclose(np.median(a2, axis=None), 2.5) + + a = np.array([0.0444502, 0.0463301, 0.141249, 0.0606775]) + assert_almost_equal((a[1] + a[3]) / 2., np.median(a)) + a = np.array([0.0463301, 0.0444502, 0.141249]) + assert_equal(a[0], np.median(a)) + a = np.array([0.0444502, 0.141249, 0.0463301]) + assert_equal(a[-1], np.median(a)) + # check array scalar result + assert_equal(np.median(a).ndim, 0) + a[1] = np.nan + assert_equal(np.median(a).ndim, 0) + + def test_axis_keyword(self): + a3 = np.array([[2, 3], + [0, 1], + [6, 7], + [4, 5]]) + for a in [a3, np.random.randint(0, 100, size=(2, 3, 4))]: + orig = a.copy() + np.median(a, axis=None) + for ax in range(a.ndim): + np.median(a, axis=ax) + assert_array_equal(a, orig) + + assert_allclose(np.median(a3, axis=0), [3, 4]) + assert_allclose(np.median(a3.T, axis=1), [3, 4]) + assert_allclose(np.median(a3), 3.5) + assert_allclose(np.median(a3, axis=None), 3.5) + assert_allclose(np.median(a3.T), 3.5) + + def test_overwrite_keyword(self): + a3 = np.array([[2, 3], + [0, 1], + [6, 7], + [4, 5]]) + a0 = np.array(1) + a1 = np.arange(2) + a2 = np.arange(6).reshape(2, 3) + assert_allclose(np.median(a0.copy(), overwrite_input=True), 1) + assert_allclose(np.median(a1.copy(), overwrite_input=True), 0.5) + assert_allclose(np.median(a2.copy(), overwrite_input=True), 2.5) + assert_allclose(np.median(a2.copy(), overwrite_input=True, axis=0), + [1.5, 2.5, 3.5]) + assert_allclose( + np.median(a2.copy(), overwrite_input=True, axis=1), [1, 4]) + assert_allclose( + np.median(a2.copy(), overwrite_input=True, axis=None), 2.5) + assert_allclose( + np.median(a3.copy(), overwrite_input=True, axis=0), [3, 4]) + assert_allclose(np.median(a3.T.copy(), overwrite_input=True, axis=1), + [3, 4]) + + a4 = np.arange(3 * 4 * 5, dtype=np.float32).reshape((3, 4, 5)) + np.random.shuffle(a4.ravel()) + assert_allclose(np.median(a4, axis=None), + np.median(a4.copy(), axis=None, overwrite_input=True)) + assert_allclose(np.median(a4, axis=0), + np.median(a4.copy(), axis=0, overwrite_input=True)) + assert_allclose(np.median(a4, axis=1), + np.median(a4.copy(), axis=1, overwrite_input=True)) + assert_allclose(np.median(a4, axis=2), + np.median(a4.copy(), axis=2, overwrite_input=True)) + + def test_array_like(self): + x = [1, 2, 3] + assert_almost_equal(np.median(x), 2) + x2 = [x] + assert_almost_equal(np.median(x2), 2) + assert_allclose(np.median(x2, axis=0), x) + + def test_subclass(self): + # gh-3846 + class MySubClass(np.ndarray): + + def __new__(cls, input_array, info=None): + obj = np.asarray(input_array).view(cls) + obj.info = info + return obj + + def mean(self, axis=None, dtype=None, out=None): + return -7 + + a = MySubClass([1, 2, 3]) + assert_equal(np.median(a), -7) + + @pytest.mark.parametrize('arr', + ([1., 2., 3.], [1., np.nan, 3.], np.nan, 0.)) + def test_subclass2(self, arr): + """Check that we return subclasses, even if a NaN scalar.""" + class MySubclass(np.ndarray): + pass + + m = np.median(np.array(arr).view(MySubclass)) + assert isinstance(m, MySubclass) + + def test_out(self): + o = np.zeros((4,)) + d = np.ones((3, 4)) + assert_equal(np.median(d, 0, out=o), o) + o = np.zeros((3,)) + assert_equal(np.median(d, 1, out=o), o) + o = np.zeros(()) + assert_equal(np.median(d, out=o), o) + + def test_out_nan(self): + with warnings.catch_warnings(record=True): + warnings.filterwarnings('always', '', RuntimeWarning) + o = np.zeros((4,)) + d = np.ones((3, 4)) + d[2, 1] = np.nan + assert_equal(np.median(d, 0, out=o), o) + o = np.zeros((3,)) + assert_equal(np.median(d, 1, out=o), o) + o = np.zeros(()) + assert_equal(np.median(d, out=o), o) + + def test_nan_behavior(self): + a = np.arange(24, dtype=float) + a[2] = np.nan + assert_equal(np.median(a), np.nan) + assert_equal(np.median(a, axis=0), np.nan) + + a = np.arange(24, dtype=float).reshape(2, 3, 4) + a[1, 2, 3] = np.nan + a[1, 1, 2] = np.nan + + # no axis + assert_equal(np.median(a), np.nan) + assert_equal(np.median(a).ndim, 0) + + # axis0 + b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 0) + b[2, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.median(a, 0), b) + + # axis1 + b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 1) + b[1, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.median(a, 1), b) + + # axis02 + b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), (0, 2)) + b[1] = np.nan + b[2] = np.nan + assert_equal(np.median(a, (0, 2)), b) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work correctly") + def test_empty(self): + # mean(empty array) emits two warnings: empty slice and divide by 0 + a = np.array([], dtype=float) + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_equal(np.median(a), np.nan) + assert_(w[0].category is RuntimeWarning) + assert_equal(len(w), 2) + + # multiple dimensions + a = np.array([], dtype=float, ndmin=3) + # no axis + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_equal(np.median(a), np.nan) + assert_(w[0].category is RuntimeWarning) + + # axis 0 and 1 + b = np.array([], dtype=float, ndmin=2) + assert_equal(np.median(a, axis=0), b) + assert_equal(np.median(a, axis=1), b) + + # axis 2 + b = np.array(np.nan, dtype=float, ndmin=2) + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_equal(np.median(a, axis=2), b) + assert_(w[0].category is RuntimeWarning) + + def test_object(self): + o = np.arange(7.) + assert_(type(np.median(o.astype(object))), float) + o[2] = np.nan + assert_(type(np.median(o.astype(object))), float) + + def test_extended_axis(self): + o = np.random.normal(size=(71, 23)) + x = np.dstack([o] * 10) + assert_equal(np.median(x, axis=(0, 1)), np.median(o)) + x = np.moveaxis(x, -1, 0) + assert_equal(np.median(x, axis=(-2, -1)), np.median(o)) + x = x.swapaxes(0, 1).copy() + assert_equal(np.median(x, axis=(0, -1)), np.median(o)) + + assert_equal(np.median(x, axis=(0, 1, 2)), np.median(x, axis=None)) + assert_equal(np.median(x, axis=(0, )), np.median(x, axis=0)) + assert_equal(np.median(x, axis=(-1, )), np.median(x, axis=-1)) + + d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11)) + np.random.shuffle(d.ravel()) + assert_equal(np.median(d, axis=(0, 1, 2))[0], + np.median(d[:,:,:, 0].flatten())) + assert_equal(np.median(d, axis=(0, 1, 3))[1], + np.median(d[:,:, 1,:].flatten())) + assert_equal(np.median(d, axis=(3, 1, -4))[2], + np.median(d[:,:, 2,:].flatten())) + assert_equal(np.median(d, axis=(3, 1, 2))[2], + np.median(d[2,:,:,:].flatten())) + assert_equal(np.median(d, axis=(3, 2))[2, 1], + np.median(d[2, 1,:,:].flatten())) + assert_equal(np.median(d, axis=(1, -2))[2, 1], + np.median(d[2,:,:, 1].flatten())) + assert_equal(np.median(d, axis=(1, 3))[2, 2], + np.median(d[2,:, 2,:].flatten())) + + def test_extended_axis_invalid(self): + d = np.ones((3, 5, 7, 11)) + assert_raises(np.AxisError, np.median, d, axis=-5) + assert_raises(np.AxisError, np.median, d, axis=(0, -5)) + assert_raises(np.AxisError, np.median, d, axis=4) + assert_raises(np.AxisError, np.median, d, axis=(0, 4)) + assert_raises(ValueError, np.median, d, axis=(1, 1)) + + def test_keepdims(self): + d = np.ones((3, 5, 7, 11)) + assert_equal(np.median(d, axis=None, keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.median(d, axis=(0, 1), keepdims=True).shape, + (1, 1, 7, 11)) + assert_equal(np.median(d, axis=(0, 3), keepdims=True).shape, + (1, 5, 7, 1)) + assert_equal(np.median(d, axis=(1,), keepdims=True).shape, + (3, 1, 7, 11)) + assert_equal(np.median(d, axis=(0, 1, 2, 3), keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.median(d, axis=(0, 1, 3), keepdims=True).shape, + (1, 1, 7, 1)) + + @pytest.mark.parametrize( + argnames='axis', + argvalues=[ + None, + 1, + (1, ), + (0, 1), + (-3, -1), + ] + ) + def test_keepdims_out(self, axis): + d = np.ones((3, 5, 7, 11)) + if axis is None: + shape_out = (1,) * d.ndim + else: + axis_norm = normalize_axis_tuple(axis, d.ndim) + shape_out = tuple( + 1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) + out = np.empty(shape_out) + result = np.median(d, axis=axis, keepdims=True, out=out) + assert result is out + assert_equal(result.shape, shape_out) + + +@pytest.mark.xfail(reason='TODO: implement') +class TestSortComplex: + + @pytest.mark.parametrize("type_in, type_out", [ + ('l', 'D'), + ('h', 'F'), + ('H', 'F'), + ('b', 'F'), + ('B', 'F'), + ('g', 'G'), + ]) + def test_sort_real(self, type_in, type_out): + # sort_complex() type casting for real input types + a = np.array([5, 3, 6, 2, 1], dtype=type_in) + actual = np.sort_complex(a) + expected = np.sort(a).astype(type_out) + assert_equal(actual, expected) + assert_equal(actual.dtype, expected.dtype) + + def test_sort_complex(self): + # sort_complex() handling of complex input + a = np.array([2 + 3j, 1 - 2j, 1 - 3j, 2 + 1j], dtype='D') + expected = np.array([1 - 3j, 1 - 2j, 2 + 1j, 2 + 3j], dtype='D') + actual = np.sort_complex(a) + assert_equal(actual, expected) + assert_equal(actual.dtype, expected.dtype)